@article{SIGMA_2013_9_a3,
author = {Sara Cruz y Cruz and Oscar Rosas-Ortiz},
title = {Dynamical {Equations,} {Invariants} and {Spectrum} {Generating} {Algebras} of {Mechanical}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a3/}
}
TY - JOUR AU - Sara Cruz y Cruz AU - Oscar Rosas-Ortiz TI - Dynamical Equations, Invariants and Spectrum Generating Algebras of Mechanical JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a3/ LA - en ID - SIGMA_2013_9_a3 ER -
Sara Cruz y Cruz; Oscar Rosas-Ortiz. Dynamical Equations, Invariants and Spectrum Generating Algebras of Mechanical. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a3/
[1] Aldaya V., Guerrero J., “Group approach to the quantization of the Pöschl-Teller dynamics”, J. Phys. A: Math. Gen., 38 (2005), 6939–6953, arXiv: quant-ph/0410009 | DOI | MR | Zbl
[2] Aquino N., Campoy G., Yee-Madeira H., “The inversion potential for $\mathrm{NH}_3$ using a DFT approach”, Chem. Phys. Lett., 296 (1998), 111–116 | DOI
[3] Arnol'd V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, 2nd ed., Springer-Verlag, New York, 1989 | DOI | MR
[4] Bagchi B., Banerjee A., Quesne C., Tkachuk V. M., “Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass”, J. Phys. A: Math. Gen., 38 (2005), 2929–2945, arXiv: quant-ph/0412016 | DOI | MR | Zbl
[5] Ballesteros Á., Enciso A., Herranz F. J., Ragnisco O., Riglioni D., “Quantum mechanics on spaces of non-constant curvature: the oscillator problem and superintegrability”, Ann. Physics, 326 (2011), 2053–2073, arXiv: 1102.5494 | DOI | MR | Zbl
[6] Bethe H. A., “Possible explanation of the solar neutrino puzzle”, Phys. Rev. Lett., 56 (1986), 1305–1308 | DOI
[7] Borges J. S., Epele L. N., Fanchiotti H., García Canal C. A., Simo F. R. A., “Quantization of a particle with a force quadratic in the velocity”, Phys. Rev. A, 38 (1988), 3101–3103 | DOI | MR
[8] Cariñena J. F., Rañada M. F., Santander M., “A quantum exactly solvable non-linear oscillator with quasi-harmonic behaviour”, Ann. Physics, 322 (2007), 434–459, arXiv: math-ph/0604008 | DOI | MR | Zbl
[9] Cariñena J. F., Rañada M. F., Santander M., “Curvature-dependent formalism, Schrödinger equation and energy levels for the harmonic oscillator on three-dimensional spherical and hyperbolic spaces”, J. Phys. A: Math. Theor., 45 (2012), 265303, 14 pp., arXiv: 1210.5055 | DOI | MR | Zbl
[10] Cariñena J. F., Rañada M. F., Santander M., “One-dimensional model of a quantum nonlinear harmonic oscillator”, Rep. Math. Phys., 54 (2004), 285–293, arXiv: hep-th/0501106 | DOI | MR | Zbl
[11] Castaños O., Schuch D., Rosas-Ortiz O., “Generalized coherent states for time-dependent and nonlinear Hamiltonian operators via complex Riccati equations”, J. Phys. A: Math. Theor. (to appear) , arXiv: 1211.5109
[12] Contreras-Astorga A., Fernández C. D. J., “Supersymmetric partners of the trigonometric Pöschl–Teller potentials”, J. Phys. A: Math. Theor., 41 (2008), 475303, 18 pp., arXiv: 0809.2760 | DOI | MR | Zbl
[13] Cruz y Cruz S., Kuru Ş., Negro J., “Classical motion and coherent states for Pöschl–Teller potentials”, Phys. Lett. A, 372 (2008), 1391–1405 | DOI | MR | Zbl
[14] Cruz y Cruz S., Negro J., Nieto L. M., “Classical and quantum position-dependent mass harmonic oscillators”, Phys. Lett. A, 369 (2007), 400–406 | DOI | MR | Zbl
[15] Cruz y Cruz S., Negro J., Nieto L. M., “On position-dependent mass harmonic oscillators”, J. Phys. Conf. Ser., 128 (2008), 012053, 12 pp. | DOI
[16] Cruz y Cruz S., Rosas-Ortiz O., “Position-dependent mass oscillators and coherent states”, J. Phys. A: Math. Theor., 42 (2009), 185205, 21 pp., arXiv: 0902.2029 | DOI | MR | Zbl
[17] Cruz y Cruz S., Rosas-Ortiz O., “$\mathrm{SU}(1,1)$ coherent states for position-dependent mass singular oscillators”, Internat. J. Theoret. Phys., 50 (2011), 2201–2210, arXiv: 0902.3976 | DOI | MR | Zbl
[18] Cveticanin L., “Conservation laws in systems with variable mass”, Trans. ASME J. Appl. Mech., 60 (1993), 954–958 | DOI | MR | Zbl
[19] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. II, Gauthier-Villars, Paris, 1889 | Zbl
[20] Díaz J. I., Negro J., Nieto L. M., Rosas-Ortiz O., “The supersymmetric modified Pöschl–Teller and delta well potentials”, J. Phys. A: Math. Gen., 32 (1999), 8447–8460, arXiv: quant-ph/9910017 | DOI | MR | Zbl
[21] Flores J., Solovey G., Gil S., “Variable mass oscillator”, Amer. J. Phys., 71 (2003), 721–725, arXiv: \href{http://arxiv.org/abs/} | DOI
[22] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, 6th ed., Academic Press Inc., San Diego, CA, 2000 | MR | Zbl
[23] Guerrero J., López-Ruiz F. F., Calixto M., Aldaya V., “On the geometry of the phase spaces of some $\mathrm{SO}(2,1)$ invariant systems”, Rep. Math. Phys., 64 (2009), 329–340 | DOI | MR | Zbl
[24] Guo H., Liu Y. X., Wei S. W., Fu C. E., “Gravity localization and effective Newtonian potential for Bent thick branes”, Europhys. Lett., 97 (2012), 60003, 6 pp. | DOI
[25] Guo H., Liu Y. X., Zhao Z. H., Chen F. W., “Thick branes with a nonminimally coupled bulk-scalar field”, Phys. Rev. D, 85 (2012), 124033, 18 pp., arXiv: 1106.5216 | DOI
[26] Hadjidemetriou J., “Secular variation of mass and the evolution of binary systems”, Adv. Astron. Astrophys., 5 (1967), 131–188
[27] Kozlov V. V., Harin A. O., “Kepler's problem in constant curvature spaces”, Celestial Mech. Dynam. Astronom., 54 (1992), 393–399 | DOI | MR | Zbl
[28] Krane K., “The falling raindrop: variations on a theme of Newton”, Amer. J. Phys., 49 (1981), 113–117 | DOI
[29] Kuru Ş., Negro J., “Factorizations of one-dimensional classical systems”, Ann. Physics, 323 (2008), 413–431, arXiv: 0709.4649 | DOI | MR | Zbl
[30] Lanczos C., The variational principles of mechanics, Mathematical Expositions, 4, University of Toronto Press, Toronto, Ont., 1949 | MR | Zbl
[31] Leubner C., Krumm P., “Lagrangians for simple systems with variable mass”, Eur. J. Phys., 11 (1990), 31–34 | DOI
[32] Lévy-Leblond J. M., “Position-dependent effective mass and Galilean invariance”, Phys. Rev. A, 52 (1995), 1845–1849 | DOI | MR
[33] Mathews P. M., Lakshmanan M., “On a unique nonlinear oscillator”, Quart. Appl. Math., 32 (1974), 215–218 | MR | Zbl
[34] Musielak Z. E., “Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients”, J. Phys. A: Math. Theor., 41 (2008), 055205, 17 pp. | DOI | MR | Zbl
[35] Pesce C. P., “The application of Lagrange equations to mechanical systems with mass explicitly dependent on position”, J. Appl. Mech., 70 (2003), 751–756 | DOI | Zbl
[36] Plastino A. R., Muzzio J. C., “On the use and abuse of Newton's second law for variable mass problems”, Celestial Mech. Dynam. Astronom., 53 (1992), 227–232 | DOI | MR | Zbl
[37] Quesne C., Tkachuk V. M., “Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A: Math. Gen., 37 (2004), 4267–4281, arXiv: math-ph/0403047 | DOI | MR | Zbl
[38] Ragnisco O., Riglioni D., “A family of exactly solvable radial quantum systems on space of non-constant curvature with accidental degeneracy in the spectrum”, SIGMA, 6 (2010), 097, 10 pp., arXiv: 1010.0641 | MR | Zbl
[39] Richstone D. O., Potter M. D., “Galactic mass loss: a mild evolutionary correction to the angular size test”, Astrophys. J., 254 (1982), 451–455 | DOI
[40] Schmidt A. G. M., “Wave-packet revival for the Schrödinger equation with position-dependent mass”, Phys. Lett. A, 353 (2006), 459–462 | DOI
[41] Sławianowski J. J., “Bertrand systems on spaces of constant sectional curvature. The action-angle analysis”, Rep. Math. Phys., 46 (2000), 429–460 | DOI | MR
[42] Sommerfeld A., Lectures on theoretical physics, v. I, Academic Press, New York, 1994
[43] Stuckens C., Kobe D. H., “Quantization of a particle with a force quadratic in the velocity”, Phys. Rev. A, 34 (1986), 3565–3567 | DOI
[44] von Ross O., “Forces acting on free carriers in semiconductors of inhomogeneous composition. I; II”, Appl. Phys. Comm., 2 (1982), 57–87
[45] von Ross O., “Positon-dependent effective masses in semiconductor theory”, Phys. Rev. B, 27 (1983), 7547–7552 | DOI
[46] Wolf K. B., Geometric optics on phase space, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2004 | MR