@article{SIGMA_2013_9_a28,
author = {Francis Valiquette},
title = {Solving {Local} {Equivalence} {Problems} with the {Equivariant} {Moving} {Frame} {Method}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a28/}
}
Francis Valiquette. Solving Local Equivalence Problems with the Equivariant Moving Frame Method. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a28/
[1] Akivis M. A., Rosenfeld B. A., Élie {C}artan (1869–1951), Translations of Mathematical Monographs, 123, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[2] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | MR | Zbl
[3] Cartan E., “La structure des groupes infinis”, Oeuvres Complètes, Part. II, v. 2, Gauthier-Villars, Paris, 1953, 1335–1384 | MR
[4] Cartan E., “Sur la structure des groupes infinis de transformations”, Oeuvres Complètes, Part. II, v. 2, Gauthier-Villars, Paris, 1953, 571–714 | MR
[5] Cartan E., “Sur les variétés à connexion projective”, Oeuvres Complètes, Part. III, v. 1, Gauthier-Villars, Paris, 1955, 825–861
[6] Cheh J., Olver P. J., Pohjanpelto J., “Algorithms for differential invariants of symmetry groups of differential equations”, Found. Comput. Math., 8 (2008), 501–532 | DOI | MR | Zbl
[7] Cheh J., Olver P. J., Pohjanpelto J., “Maurer–Cartan equations for Lie symmetry pseudogroups of differential equations”, J. Math. Phys., 46 (2005), 023504, 11 pp. | DOI | MR
[8] Cox D., Little J., O'Shea D., Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, 3rd ed., Springer, New York, 2007 | DOI | MR
[9] Fels M., Olver P. J., “Moving coframes. II: Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[10] Gardner R. B., The method of equivalence and its applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 58, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989 | DOI | MR | Zbl
[11] Gardner R. B., Shadwick W. F., “An equivalence problem for a two-form and a vector field on $R^3$”, Differential Geometry, Global Analysis, and Topology (Halifax, NS, 1990), CMS Conf. Proc., 12, Amer. Math. Soc., Providence, RI, 1991, 41–50 | MR
[12] Guillemin V., Sternberg S., Deformation theory of pseudogroup structures, Mem. Amer. Math. Soc., 64, 1966, 80 pp. | MR | Zbl
[13] Hubert E., “Differential invariants of a {L}ie group action: syzygies on a generating set”, J. Symbolic Comput., 44 (2009), 382–416, arXiv: 0710.4318 | DOI | MR | Zbl
[14] Johnson H. H., “Classical differential invariants and applications to partial differential equations”, Math. Ann., 148 (1962), 308–329 | MR | Zbl
[15] Kamran N., Contributions to the study of the equivalence problem of Élie Cartan and its applications to partial and ordinary differential equations, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8$^{\rm o}$ (2), 45, no. 7, 1989, 122 pp. | MR | Zbl
[16] Kogan I. A., Olver P. J., “Invariant Euler–Lagrange equations and the invariant variational bicomplex”, Acta Appl. Math., 76 (2003), 137–193 | DOI | MR | Zbl
[17] Kruglikov B., Lychagin V., “Global Lie–Tresse theorem”, arXiv: 1111.5480
[18] Kruglikov B., Lychagin V., “Invariants of pseudogroup actions: homological methods and finiteness theorem”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1131–1165, arXiv: math.DG/0511711 | DOI | MR | Zbl
[19] Kumpera A., “Invariants différentiels d'un pseudogroupe de Lie, I”, J. Differential Geometry, 10 (1975), 289–345 | MR | Zbl
[20] Kuranishi M., “On the local theory of continuous infinite pseudo groups, I”, Nagoya Math. J., 15 (1959), 225–260 | MR
[21] Lie S., “Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen $x$, $y$, die eine Gruppe von Transformationen gestatten. I–IV”, Gesammelte Abhandlungen, v. 5, B. G. Teubner, Leipzig, 1924, 240–310; 362–427; 432–448 | Zbl
[22] Lie S., Scheffers G., Vorlesungen über Continuierliche Guppen mit Geometrischen und Anderen Anwendungen, B. G. Teubner, Leipzig, 1893
[23] Mackenzie K., Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, 124, Cambridge University Press, Cambridge, 1987 | DOI | MR | Zbl
[24] Milson R., Valiquette F., Point equivalence of second-order odes: maximal classifying order, arXiv: 1208.1014
[25] Muñoz J., Muriel F. J., Rodríguez J., “On the finiteness of differential invariants”, J. Math. Anal. Appl., 284 (2003), 266–282 | DOI | MR | Zbl
[26] Olver P. J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[27] Olver P. J., “Moving frames and singularities of prolonged group actions”, Selecta Math. (N.S.), 6 (2000), 41–77 | DOI | MR | Zbl
[28] Olver P. J., Pohjanpelto J., “Differential invariant algebras of Lie pseudo-groups”, Adv. Math., 222 (2009), 1746–1792 | DOI | MR | Zbl
[29] Olver P. J., Pohjanpelto J., “Maurer–Cartan forms and the structure of Lie pseudo-groups”, Selecta Math. (N.S.), 11 (2005), 99–126 | DOI | MR | Zbl
[30] Olver P. J., Pohjanpelto J., “Moving frames for Lie pseudo-groups”, Canad. J. Math., 60 (2008), 1336–1386 | DOI | MR | Zbl
[31] Olver P. J., Pohjanpelto J., “Persistence of freeness for Lie pseudogroup actions”, Ark. Mat., 50 (2012), 165–182, arXiv: 0912.4501 | DOI | MR | Zbl
[32] Olver P. J., “Recursive moving frames”, Results Math., 60 (2011), 423–452 | DOI | MR | Zbl
[33] Olver P. J., Pohjanpelto J., Valiquette F., “On the structure of Lie pseudo-groups”, SIGMA, 5 (2009), 077, 14 pp., arXiv: 0907.4086 | DOI | MR | Zbl
[34] Pohjanpelto J., “Reduction of exterior differential systems with infinite dimensional symmetry groups”, BIT Num. Math., 48 (2008), 337–355 | DOI | MR | Zbl
[35] Seiler W. M., Involution. The formal theory of differential equations and its applications in computer algebra, Algorithms and Computation in Mathematics, 24, Springer-Verlag, Berlin, 2010 | DOI | MR
[36] Shemyakova E., Mansfield E. L., “Moving frames for Laplace invariants”, Proceedings ISSAC 2008, ed. D. Jeffrey, ACM, New York, 2008, 295–302 | DOI | MR
[37] Singer I. M., Sternberg S., “The infinite groups of Lie and Cartan. I: The transitive groups”, J. Analyse Math., 15 (1965), 1–114 | MR | Zbl
[38] Thompson R., Valiquette F., Group foliation of differential equations using moving frames, Preprint, Dalhousie University, 2012 | MR
[39] Thompson R., Valiquette F., “On the cohomology of the invariant Euler–Lagrange complex”, Acta Appl. Math., 116 (2011), 199–226 | DOI | MR | Zbl
[40] Tresse A., Détermination des invariants ponctuels de l'équation différentielle ordinaire de second ordre $y'' = \omega(x,y,y')$, Hirzel, Leipzig, 1896
[41] Tresse A., “Sur les invariants différentiels des groupes continus de transformations”, Acta Math., 18 (1894), 1–88 | DOI | MR
[42] Valiquette F., “Structure equations of Lie pseudo-groups”, J. Lie Theory, 18 (2008), 869–895 | MR | Zbl