@article{SIGMA_2013_9_a27,
author = {Robert Oeckl},
title = {Free {Fermi} and {Bose} {Fields} in {TQFT} and {GBF}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a27/}
}
Robert Oeckl. Free Fermi and Bose Fields in TQFT and GBF. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a27/
[1] Atiyah M., “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 1988, no. 68, 175–186 | MR | Zbl
[2] Baez J. C., Segal I. E., Zhou Z. F., Introduction to algebraic and constructive quantum field theory, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1992 | MR | Zbl
[3] Bleuler K., “Eine neue Methode zur Behandlung der longitudinalen und skalaren Photonen”, Helvetica Phys. Acta, 23 (1950), 567–586 | MR | Zbl
[4] Colosi D., General boundary quantum field theory in de Sitter spacetime, arXiv: 1010.1209
[5] Gupta S. N., “Theory of longitudinal photons in quantum electrodynamics”, Proc. Phys. Soc. Sect. A, 63 (1950), 681–691 | MR | Zbl
[6] Oeckl R., “Affine holomorphic quantization”, J. Geom. Phys., 62 (2012), 1373–1396, arXiv: 1104.5527 | DOI | MR | Zbl
[7] Oeckl R., “General boundary quantum field theory: foundations and probability interpretation”, Adv. Theor. Math. Phys., 12 (2008), 319–352, arXiv: hep-th/0509122 | MR | Zbl
[8] Oeckl R., “General boundary quantum field theory: timelike hypersurfaces in the Klein–Gordon theory”, Phys. Rev. D, 73 (2006), 065017, 13 pp., arXiv: hep-th/0509123 | DOI | MR
[9] Oeckl R., “Holomorphic quantization of linear field theory in the general boundary formulation”, SIGMA, 8 (2012), 050, 31 pp., arXiv: 1009.5615 | DOI | MR
[10] Oeckl R., “Observables in the general boundary formulation”, Quantum Field Theory and Gravity (Regensburg, 2010), Birkhäuser, Basel, 2012, 137–156, arXiv: 1101.0367 | DOI | MR
[11] Oeckl R., “Probabilities in the general boundary formulation”, J. Phys. Conf. Ser., 67 (2007), 012049, 6 pp., arXiv: hep-th/0612076 | DOI
[12] Oeckl R., “Schrödinger–Feynman quantization and composition of observables in general boundary quantum field theory”, arXiv: 1201.1877
[13] Oeckl R., “States on timelike hypersurfaces in quantum field theory”, Phys. Lett. B, 622 (2005), 172–177, arXiv: hep-th/0505267 | DOI | MR | Zbl
[14] Oeckl R., “Two-dimensional quantum Yang–Mills theory with corners”, J. Phys. A: Math. Theor., 41 (2008), 135401, 20 pp., arXiv: hep-th/0608218 | DOI | MR | Zbl
[15] Peskin M. E., Schroeder D. V., An introduction to quantum field theory, Addison-Wesley Publishing Company, Reading, MA, 1995 | MR
[16] Reeh H., Schlieder S., “Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Felden”, Nuovo Cimento, 22 (1961), 1051–1068 | DOI | MR
[17] Segal G., “The definition of conformal field theory”, Differential Geometrical Methods in Theoretical Physics, Como, 1987, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 250, Kluwer Acad. Publ., Dordrecht, 1988, 165–171 | MR
[18] Segal G., “The definition of conformal field theory”, Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., 308, Cambridge University Press, Cambridge, 2004, 421–577 | MR | Zbl
[19] Woodhouse N., Geometric quantization, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1980 | MR