$G$-Strands and Peakon Collisions on $\rm{Diff}\,(\mathbb{R})$
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A $G$-strand is a map $g:\mathbb{R}\times\mathbb{R}\to G$ for a Lie group $G$ that follows from Hamilton's principle for a certain class of $G$-invariant Lagrangians. Some $G$-strands on finite-dimensional groups satisfy $1+1$ space-time evolutionary equations that admit soliton solutions as completely integrable Hamiltonian systems. For example, the ${\rm SO}(3)$-strand equations may be regarded physically as integrable dynamics for solitons on a continuous spin chain. Previous work has shown that $G$-strands for diffeomorphisms on the real line possess solutions with singular support (e.g. peakons). This paper studies collisions of such singular solutions of $G$-strands when $G={\rm Diff}\,(\mathbb{R})$ is the group of diffeomorphisms of the real line $\mathbb{R}$, for which the group product is composition of smooth invertible functions. In the case of peakon-antipeakon collisions, the solution reduces to solving either Laplace's equation or the wave equation (depending on a sign in the Lagrangian) and is written in terms of their solutions. We also consider the complexified systems of $G$-strand equations for $G={\rm Diff}\,(\mathbb{R})$ corresponding to a harmonic map $g: \mathbb{C}\to{\rm Diff}\,(\mathbb{R})$ and find explicit expressions for its peakon-antipeakon solutions, as well.
Keywords: Hamilton's principle; continuum spin chains; Euler–Poincaré equations; Sobolev norms; singular momentum maps; diffeomorphisms; harmonic maps.
@article{SIGMA_2013_9_a26,
     author = {Darryl D. Holm and Rossen I. Ivanov},
     title = {$G${-Strands} and {Peakon} {Collisions} on $\rm{Diff}\,(\mathbb{R})$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a26/}
}
TY  - JOUR
AU  - Darryl D. Holm
AU  - Rossen I. Ivanov
TI  - $G$-Strands and Peakon Collisions on $\rm{Diff}\,(\mathbb{R})$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a26/
LA  - en
ID  - SIGMA_2013_9_a26
ER  - 
%0 Journal Article
%A Darryl D. Holm
%A Rossen I. Ivanov
%T $G$-Strands and Peakon Collisions on $\rm{Diff}\,(\mathbb{R})$
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a26/
%G en
%F SIGMA_2013_9_a26
Darryl D. Holm; Rossen I. Ivanov. $G$-Strands and Peakon Collisions on $\rm{Diff}\,(\mathbb{R})$. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a26/

[1] Camassa R., Holm D. D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR | Zbl

[2] Cherednik I. V., “On the integrability of the 2-dimensional asymmetric chiral ${\rm O}(3)$ field equations and their quantum analogue”, Soviet J. Nuclear Phys., 33 (1981), 144–145

[3] De Vega H. J., “Field theories with an infinite number of conservation laws and Bäcklund transformations in two dimensions”, Phys. Lett. B, 87 (1979), 233–236 | DOI

[4] Ellis D. C. P., Gay-Balmaz F., Holm D. D., Putkaradze V., Ratiu T. S., “Symmetry reduced dynamics of charged molecular strands”, Arch. Ration. Mech. Anal., 197 (2010), 811–902, arXiv: 0901.2959 | DOI | MR | Zbl

[5] Gay-Balmaz F., “Clebsch variational principles in field theories and singular solutions of covariant EPDiff equations”, Rep. Math. Phys., 71 (2013), 231–277, arXiv: 1209.0109

[6] Gay-Balmaz F., Ratiu T. S., “The geometric structure of complex fluids”, Adv. in Appl. Math., 42 (2009), 176–275, arXiv: 0903.4294 | DOI | MR | Zbl

[7] Gibbons J., Holm D. D., Kupershmidt B., “Gauge-invariant Poisson brackets for chromohydrodynamics”, Phys. Lett. A, 90 (1982), 281–283 | DOI | MR

[8] Gibbons J., Holm D. D., Kupershmidt B., “The Hamiltonian structure of classical chromohydrodynamics”, Phys. D, 6 (1983), 179–194 | DOI | MR

[9] Guest M. A., Harmonic maps, loop groups, and integrable systems, London Mathematical Society Student Texts, 38, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[10] Guha P., Olver P. J., “Geodesic flow and two (super) component analog of the Camassa–Holm equation”, SIGMA, 2 (2006), 054, 9 pp., arXiv: nlin.SI/0605041 | DOI | MR | Zbl

[11] Hlavatý L., Šnobl L., “Principal chiral models on non-semisimple groups”, J. Phys. A: Math. Gen., 34 (2001), 7795–7809 | DOI | MR | Zbl

[12] Holm D. D., “Euler–{P}oincaré dynamics of perfect complex fluids”, Geometry, Mechanics, and Dynamics, eds. P. Newton, P. Holmes, A. Weinstein, Springer, New York, 2002, 113–167, arXiv: nlin.CD/0103041 | DOI | MR | Zbl

[13] Holm D. D., Geometric mechanics, v. II, Rotating, translating and rolling, 2nd ed., Imperial College Press, London, 2011

[14] Holm D. D., Ivanov R. I., Percival J. R., “$G$-strands”, J. Nonlinear Sci., 22 (2012), 517–551, arXiv: 1109.4421 | DOI | MR | Zbl

[15] Holm D. D., Kupershmidt B. A., “The analogy between spin glasses and Yang–Mills fluids”, J. Math. Phys., 29 (1988), 21–30 | DOI | MR | Zbl

[16] Holm D. D., Marsden J. E., “Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the {EPD}iff equation”, The Breadth of Symplectic and {P}oisson Geometry, Progr. Math., 232, eds. J. E. Marsden, T. S. Ratiu, Birkhäuser Boston, Boston, MA, 2005, 203–235, arXiv: nlin.CD/0312048 | DOI | MR

[17] Holm D. D., Marsden J. E., Ratiu T. S., “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math., 137 (1998), 1–81, arXiv: chao-dyn/9801015 | DOI | MR | Zbl

[18] Lax P. D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[19] Maillet J.-M., “Hamiltonian structures for integrable classical theories from graded Kac–Moody algebras”, Phys. Lett. B, 167 (1986), 401–405 | DOI | MR

[20] Mañas M., “The principal chiral model as an integrable system”, Harmonic Maps and Integrable Systems, Aspects Math. E, 23, Vieweg, Braunschweig, 1994, 147–173 | MR

[21] Marsden J. E., Ratiu T. S., Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994 | DOI | MR | Zbl

[22] Novikov S., Manakov S. V., Pitaevskiĭ L. P., Zakharov V. E., Theory of solitons. The inverse scattering method, Contemporary Soviet Mathematics, Plenum, New York, 1984 | MR | Zbl

[23] Pohlmeyer K., “Integrable Hamiltonian systems and interactions through quadratic constraints”, Comm. Math. Phys., 46 (1976), 207–221 | DOI | MR | Zbl

[24] Popowicz Z., “A 2-component or $N=2$ supersymmetric Camassa–Holm equation”, Phys. Lett. A, 354 (2006), 110–114, arXiv: nlin.SI/0509050 | DOI | MR | Zbl

[25] Sochen N., “Integrable generalized principal chiral models”, Phys. Lett. B, 391 (1997), 374–380, arXiv: hep-th/9607009 | DOI | MR

[26] Tronci C., “Hybrid models for complex fluids with multipolar interactions”, J. Geom. Mech., 4 (2012), 333–363, arXiv: 1011.4389 | DOI | MR | Zbl

[27] Uhlenbeck K., “Harmonic maps into Lie groups: classical solutions of the chiral model”, J. Differential Geom., 30 (1989), 1–50 | MR | Zbl

[28] Ward R. S., “Soliton solutions in an integrable chiral model in $2+1$ dimensions”, J. Math. Phys., 29 (1988), 386–389 | DOI | MR | Zbl

[29] Witten E., “Non-abelian bosonization in two dimensions”, Comm. Math. Phys., 92 (1984), 455–472 | DOI | MR | Zbl

[30] Yanovski A. B., “Bi-Hamiltonian formulation of the ${\rm O}(3)$ chiral fields equations hierarchy via a polynomial bundle”, J. Phys. A: Math. Gen., 31 (1998), 8709–8726 | DOI | MR | Zbl

[31] Zakharov V. E., Mikhailov A. V., “On the integrability of classical spinor models in two-dimensional space-time”, Comm. Math. Phys., 74 (1980), 21–40 | DOI | MR

[32] Zakharov V. E., Mikhailov A. V., “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method”, Soviet Phys. JETP, 47 (1978), 1017–1027 | MR