@article{SIGMA_2013_9_a24,
author = {Manoj Gopalkrishnan and Ezra Miller and Anne Shiu},
title = {A {Projection} {Argument} for {Differential} {Inclusions,} with {Applications} to {Persistence} of {Mass-Action} {Kinetics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a24/}
}
TY - JOUR AU - Manoj Gopalkrishnan AU - Ezra Miller AU - Anne Shiu TI - A Projection Argument for Differential Inclusions, with Applications to Persistence of Mass-Action Kinetics JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a24/ LA - en ID - SIGMA_2013_9_a24 ER -
%0 Journal Article %A Manoj Gopalkrishnan %A Ezra Miller %A Anne Shiu %T A Projection Argument for Differential Inclusions, with Applications to Persistence of Mass-Action Kinetics %J Symmetry, integrability and geometry: methods and applications %D 2013 %V 9 %U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a24/ %G en %F SIGMA_2013_9_a24
Manoj Gopalkrishnan; Ezra Miller; Anne Shiu. A Projection Argument for Differential Inclusions, with Applications to Persistence of Mass-Action Kinetics. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a24/
[1] Adleman L., Gopalkrishnan M., Huang M. D., Moisset P., Reishus D., On the mathematics of the law of mass action, arXiv: 0810.1108
[2] Anderson D. F., “A proof of the global attractor conjecture in the single linkage class case”, SIAM J. Appl. Math., 71 (2011), 1487–1508, arXiv: 1101.0761 | DOI | MR | Zbl
[3] Anderson D. F., “Global asymptotic stability for a class of nonlinear chemical equations”, SIAM J. Appl. Math., 68 (2008), 1464–1476, arXiv: 0708.0319 | DOI | MR | Zbl
[4] Anderson D. F., Shiu A., “The dynamics of weakly reversible population processes near facets”, SIAM J. Appl. Math., 70 (2010), 1840–1858, arXiv: 0903.0901 | DOI | MR | Zbl
[5] Angeli D., De Leenheer P., Sontag E., “A Petri net approach to persistence analysis in chemical reaction networks”, Biology and Control Theory: Current Challenges, Lect. Notes Contr. Inf., 357, eds. I. Queinnec, S. Tarbouriech, G. Garcia, S. I. Niculescu, Springer-Verlag, Berlin, 2007, 181–216, arXiv: q-bio/0608019 | DOI | MR
[6] Angeli D., De Leenheer P., Sontag E. D., “Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws”, SIAM J. Appl. Math., 71 (2011), 128–146 | DOI | MR | Zbl
[7] Aubin J. P., Cellina A., Differential inclusions. Set-valued maps and viability theory, Grundlehren der Mathematischen Wissenschaften, 264, Springer-Verlag, Berlin, 1984 | DOI | MR | Zbl
[8] Banaji M., Mierczyński J., “Global convergence in systems of differential equations arising from chemical reaction networks”, J. Differential Equations, 254 (2013), 1359–1374, arXiv: 1205.1716 | DOI | MR | Zbl
[9] Craciun G., Dickenstein A., Shiu A., Sturmfels B., “Toric dynamical systems”, J. Symbolic Comput., 44 (2009), 1551–1565, arXiv: 0708.3431 | DOI | MR | Zbl
[10] Craciun G., Nazarov F., Pantea C., “Persistence and permanence of mass-action and power-law dynamical systems”, SIAM J. Appl. Math., 73 (2013), 305–329, arXiv: 1010.3050 | DOI | MR
[11] Feinberg M., “Chemical reaction network structure and the stability of complex isothermal reactors. I: The deficiency zero and deficiency one theorems”, Chem. Eng. Sci., 42 (1987), 2229–2268 | DOI
[12] Feinberg M., “Complex balancing in general kinetic systems”, Arch. Rational Mech. Anal., 49 (1972), 187–194 | DOI | MR
[13] Feinberg M., Lectures on chemical reaction networks, unpublished lecture notes, , 1979 http://www.che.eng.ohio-state.edu/\allowbreakF̃EINBERG/LecturesOnReactionNetworks/
[14] Freedman H. I., Moson P., “Persistence definitions and their connections”, Proc. Amer. Math. Soc., 109 (1990), 1025–1033 | DOI | MR | Zbl
[15] Gopalkrishnan M., Miller E., Shiu A., A geometric approach to the global attractor conjecture, in preparation
[16] Horn F., “The dynamics of open reaction systems”, Mathematical Aspects of Chemical and Biochemical Problems and Quantum Chemistry, Proc. SIAM-AMS Sympos. Appl. Math. (New York, 1974), SIAM-AMS Proceedings, 8, Amer. Math. Soc., Providence, R.I., 1974, 125–137 | MR
[17] Horn F., Jackson R., “General mass action kinetics”, Arch. Rational Mech. Anal., 47 (1972), 81–116 | DOI | MR
[18] Irwin M. C., Smooth dynamical systems, Pure and Applied Mathematics, 94, Academic Press Inc., New York, 1980 | MR | Zbl
[19] Lee J. M., Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer-Verlag, New York, 2003 | DOI | MR
[20] Pantea C., “On the persistence and global stability of mass-action systems”, SIAM J. Math. Anal., 44 (2012), 1636–1673, arXiv: 1103.0603 | DOI | MR | Zbl
[21] Savageau M. A., “Biochemical systems analysis. I: Some mathematical properties of the rate law for the component enzymatic reactions”, J. Theor. Biol., 25 (1969), 365–369 | DOI
[22] Siegel D., Johnston M. D., “A stratum approach to global stability of complex balanced systems”, Dyn. Syst., 26 (2011), 125–146, arXiv: 1008.1622 | DOI | MR | Zbl