Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for harmonic maps from Minkowski space with its standard flat metric to a certain non-constant curvature Lorentzian 2-metric is studied. The target manifold is distinguished by the fact that the Euler–Lagrange equation for the energy functional is Darboux integrable. The time evolution of the Cauchy data is reduced to an ordinary differential equation of Lie type associated to ${\rm SL}(2)$ acting on a manifold of dimension 4. This is further reduced to the simplest Lie system: the Riccati equation. Lie reduction permits explicit representation formulas for various initial value problems. Additionally, a concise (hyperbolic) Weierstrass-type representation formula is derived. Finally, a number of open problems are framed.
Keywords: wave map; Cauchy problem; Darboux integrable; Lie system; Lie reduction; explicit representation.
@article{SIGMA_2013_9_a23,
     author = {Peter J. Vassiliou},
     title = {Cauchy {Problem} for {a~Darboux} {Integrable} {Wave} {Map} {System} and {Equations} of {Lie} {Type}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a23/}
}
TY  - JOUR
AU  - Peter J. Vassiliou
TI  - Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a23/
LA  - en
ID  - SIGMA_2013_9_a23
ER  - 
%0 Journal Article
%A Peter J. Vassiliou
%T Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a23/
%G en
%F SIGMA_2013_9_a23
Peter J. Vassiliou. Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a23/

[1] Anderson I. M., Fels M. E., “The Cauchy problem for Darboux integrable systems and non-linear d'Alembert formulas”, SIGMA, 9 (2013), 017, 22 pp., arXiv: 1210.2370 | DOI

[2] Anderson I. M., Fels M. E., Vassiliou P. J., “Superposition formulas for exterior differential systems”, Adv. Math., 221 (2009), 1910–1963, arXiv: 0708.0679 | DOI | MR | Zbl

[3] Baird P., Wood J. C., Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, 29, The Clarendon Press, Oxford University Press, Oxford, 2003 | DOI | MR

[4] Bryant R. L., “An introduction to {L}ie groups and symplectic geometry”, Geometry and Quantum Field Theory (Park City, UT, 1991), IAS/Park City Math. Ser., 1, Amer. Math. Soc., Providence, RI, 1995, 5–181 http://fds.duke.edu/db/aas/math/faculty/bryant/publications/9565 | MR | Zbl

[5] Cariñena J. F., de Lucas J., “Lie systems: theory, generalisations, and applications”, Dissertationes Math., 479, 2011, 162 pp., arXiv: 1103.4166 | DOI | MR | Zbl

[6] Clelland J. N., Vassiliou P. J., A solvable string on a Lorentzian surface, arXiv: 1303.0087

[7] Dubrov B. M., Komrakov B. P., “The constructive equivalence problem in differential geometry”, Sb. Math., 191 (2000), 655–681 | DOI | MR | Zbl

[8] Eells J., Sampson J. H., “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86 (1964), 109–160 | DOI | MR | Zbl

[9] Goursat E., Leçons sur l'intégration des équations aux dérivées partielles du seconde ordre á deux variables indépendent, v. II, Hermann, Paris, 1898 | Zbl

[10] Gu C. H., “On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space”, Comm. Pure Appl. Math., 33 (1980), 727–737 | DOI | MR | Zbl

[11] Guest M. A., Harmonic maps, loop groups, and integrable systems, London Mathematical Society Student Texts, 38, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[12] Hélein F., Wood J. C., “Harmonic maps”, Handbook of Global Analysis, eds. D. Krupka, D. Saunders, Elsevier, Amsterdam, 2008, 417–491 | DOI | MR

[13] Ivey T. A., Landsberg J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[14] Kostrigina O. S., Zhiber A. V., “Darboux-integrable two-component nonlinear hyperbolic systems of equations”, J. Math. Phys., 52 (2011), 033503, 32 pp. | DOI | MR

[15] Ream R., Darboux integrability of wave maps into two-dimensional Riemannian manifolds, Masters degree thesis, Utah State University, 2008 http://digitalcommons.usu.edu/etd/203/

[16] Shatah J., Struwe M., Geometric wave equations, Courant Lecture Notes in Mathematics, 2, New York University Courant Institute of Mathematical Sciences, New York, 1998 | MR | Zbl

[17] Tao T., Wave maps, http://www.math.ucla.edu/t̃ao/preprints/wavemaps.pdf

[18] Vassiliou P. J., “A constructive generalised Goursat normal form”, Differential Geom. Appl., 24 (2006), 332–350, arXiv: math.DG/0404377 | DOI | MR | Zbl

[19] Vassiliou P. J., “Efficient construction of contact coordinates for partial prolongations”, Found. Comput. Math., 6 (2006), 269–308, arXiv: math.DG/0406234 | DOI | MR | Zbl

[20] Vassiliou P. J., “Tangential characteristic symmetries and first order hyperbolic systems”, Appl. Algebra Engrg. Comm. Comput., 11 (2001), 377–395 | DOI | MR | Zbl

[21] Vassiliou P. J., “Vessiot structure for manifolds of {$(p,q)$}-hyperbolic type: Darboux integrability and symmetry”, Trans. Amer. Math. Soc., 353 (2001), 1705–1739 | DOI | MR | Zbl

[22] Zakrzewski W. J., Low-dimensional sigma models, Adam Hilger Ltd., Bristol, 1989 | MR | Zbl

[23] Zhiber A. V., Sokolov V. V., “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | MR | Zbl