@article{SIGMA_2013_9_a23,
author = {Peter J. Vassiliou},
title = {Cauchy {Problem} for {a~Darboux} {Integrable} {Wave} {Map} {System} and {Equations} of {Lie} {Type}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a23/}
}
Peter J. Vassiliou. Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a23/
[1] Anderson I. M., Fels M. E., “The Cauchy problem for Darboux integrable systems and non-linear d'Alembert formulas”, SIGMA, 9 (2013), 017, 22 pp., arXiv: 1210.2370 | DOI
[2] Anderson I. M., Fels M. E., Vassiliou P. J., “Superposition formulas for exterior differential systems”, Adv. Math., 221 (2009), 1910–1963, arXiv: 0708.0679 | DOI | MR | Zbl
[3] Baird P., Wood J. C., Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, 29, The Clarendon Press, Oxford University Press, Oxford, 2003 | DOI | MR
[4] Bryant R. L., “An introduction to {L}ie groups and symplectic geometry”, Geometry and Quantum Field Theory (Park City, UT, 1991), IAS/Park City Math. Ser., 1, Amer. Math. Soc., Providence, RI, 1995, 5–181 http://fds.duke.edu/db/aas/math/faculty/bryant/publications/9565 | MR | Zbl
[5] Cariñena J. F., de Lucas J., “Lie systems: theory, generalisations, and applications”, Dissertationes Math., 479, 2011, 162 pp., arXiv: 1103.4166 | DOI | MR | Zbl
[6] Clelland J. N., Vassiliou P. J., A solvable string on a Lorentzian surface, arXiv: 1303.0087
[7] Dubrov B. M., Komrakov B. P., “The constructive equivalence problem in differential geometry”, Sb. Math., 191 (2000), 655–681 | DOI | MR | Zbl
[8] Eells J., Sampson J. H., “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86 (1964), 109–160 | DOI | MR | Zbl
[9] Goursat E., Leçons sur l'intégration des équations aux dérivées partielles du seconde ordre á deux variables indépendent, v. II, Hermann, Paris, 1898 | Zbl
[10] Gu C. H., “On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space”, Comm. Pure Appl. Math., 33 (1980), 727–737 | DOI | MR | Zbl
[11] Guest M. A., Harmonic maps, loop groups, and integrable systems, London Mathematical Society Student Texts, 38, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[12] Hélein F., Wood J. C., “Harmonic maps”, Handbook of Global Analysis, eds. D. Krupka, D. Saunders, Elsevier, Amsterdam, 2008, 417–491 | DOI | MR
[13] Ivey T. A., Landsberg J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[14] Kostrigina O. S., Zhiber A. V., “Darboux-integrable two-component nonlinear hyperbolic systems of equations”, J. Math. Phys., 52 (2011), 033503, 32 pp. | DOI | MR
[15] Ream R., Darboux integrability of wave maps into two-dimensional Riemannian manifolds, Masters degree thesis, Utah State University, 2008 http://digitalcommons.usu.edu/etd/203/
[16] Shatah J., Struwe M., Geometric wave equations, Courant Lecture Notes in Mathematics, 2, New York University Courant Institute of Mathematical Sciences, New York, 1998 | MR | Zbl
[17] Tao T., Wave maps, http://www.math.ucla.edu/t̃ao/preprints/wavemaps.pdf
[18] Vassiliou P. J., “A constructive generalised Goursat normal form”, Differential Geom. Appl., 24 (2006), 332–350, arXiv: math.DG/0404377 | DOI | MR | Zbl
[19] Vassiliou P. J., “Efficient construction of contact coordinates for partial prolongations”, Found. Comput. Math., 6 (2006), 269–308, arXiv: math.DG/0406234 | DOI | MR | Zbl
[20] Vassiliou P. J., “Tangential characteristic symmetries and first order hyperbolic systems”, Appl. Algebra Engrg. Comm. Comput., 11 (2001), 377–395 | DOI | MR | Zbl
[21] Vassiliou P. J., “Vessiot structure for manifolds of {$(p,q)$}-hyperbolic type: Darboux integrability and symmetry”, Trans. Amer. Math. Soc., 353 (2001), 1705–1739 | DOI | MR | Zbl
[22] Zakrzewski W. J., Low-dimensional sigma models, Adam Hilger Ltd., Bristol, 1989 | MR | Zbl
[23] Zhiber A. V., Sokolov V. V., “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | MR | Zbl