@article{SIGMA_2013_9_a21,
author = {Annalisa Calini and Thomas Ivey and Gloria Mar{\'\i}-Beffa},
title = {Integrable {Flows} for {Starlike} {Curves} in {Centroaffine} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a21/}
}
TY - JOUR AU - Annalisa Calini AU - Thomas Ivey AU - Gloria Marí-Beffa TI - Integrable Flows for Starlike Curves in Centroaffine Space JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a21/ LA - en ID - SIGMA_2013_9_a21 ER -
Annalisa Calini; Thomas Ivey; Gloria Marí-Beffa. Integrable Flows for Starlike Curves in Centroaffine Space. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a21/
[1] Arnold V. I., Khesin B. A., Topological methods in hydrodynamics, Applied Mathematical Sciences, 125, Springer-Verlag, New York, 1998 | MR | Zbl
[2] Brylinski J.-L., Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics, 107, Birkhäuser Boston Inc., Boston, MA, 1993 | MR | Zbl
[3] Calini A., Ivey T., Marí Beffa G., “Remarks on KdV-type flows on star-shaped curves”, Phys. D, 238 (2009), 788–797, arXiv: 0808.3593 | DOI | MR | Zbl
[4] Chou K. S., Qu C., “Integrable motions of space curves in affine geometry”, Chaos Solitons Fractals, 14 (2002), 29–44 | DOI | MR | Zbl
[5] Dickson R., Gesztesy F., Unterkofler K., “Algebro-geometric solutions of the Boussinesq hierarchy”, Rev. Math. Phys., 11 (1999), 823–879, arXiv: solv-int/9809004 | DOI | MR | Zbl
[6] Doliwa A., Santini P. M., “An elementary geometric characterization of the integrable motions of a curve”, Phys. Lett. A, 185 (1994), 373–384 | DOI | MR | Zbl
[7] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, Nonlinear Science: Theory and Applications, John Wiley Sons Ltd., Chichester, 1993 | MR
[8] Drinfel'd V. G., Sokolov V. V., “Lie algebras and equations of {K}orteweg–de {V}ries type”, J. Sov. Math., 30 (1985), 1975–2036 | DOI
[9] Hasimoto R., “A soliton on a vortex filament”, J. Fluid Mech., 51 (1972), 477–485 | DOI | Zbl
[10] Huang R., Singer D. A., “A new flow on starlike curves in ${\mathbb R}^3$”, Proc. Amer. Math. Soc., 130 (2002), 2725–2735 | DOI | MR | Zbl
[11] Lamb G. L., “Solitons on moving space curves”, J. Math. Phys., 18 (1977), 1654–1661 | DOI | MR | Zbl
[12] Langer J., “Recursion in curve geometry”, New York J. Math., 5 (1999), 25–51 | MR | Zbl
[13] Langer J., Perline R., “Local geometric invariants of integrable evolution equations”, J. Math. Phys., 35 (1994), 1732–1737, arXiv: solv-int/9401001 | DOI | MR | Zbl
[14] Langer J., Perline R., “Poisson geometry of the filament equation”, J. Nonlinear Sci., 1 (1991), 71–93 | DOI | MR | Zbl
[15] Marí Beffa G., “Bi-Hamiltonian flows and their realizations as curves in real semisimple homogeneous manifolds”, Pacific J. Math., 247 (2010), 163–188 | DOI | MR | Zbl
[16] Marí Beffa G., “Poisson brackets associated to the conformal geometry of curves”, Trans. Amer. Math. Soc., 357 (2005), 2799–2827 | DOI | MR | Zbl
[17] Marí Beffa G., “The theory of differential invariants and KdV Hamiltonian evolutions”, Bull. Soc. Math. France, 127 (1999), 363–391 | MR | Zbl
[18] Marsden J., Weinstein A., “Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids”, Phys. D, 7 (1983), 305–323 | DOI | MR
[19] Mokhov O., “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 121–151, arXiv: hep-th/9503076 | MR | Zbl
[20] Musso E., “Motions of curves in the projective plane inducing the Kaup–Kupershmidt hierarchy”, SIGMA, 8 (2012), 030, 20 pp., arXiv: 1205.5329 | DOI | MR | Zbl
[21] Nakayama K., “Motion of curves in hyperboloid in the Minkowski space”, J. Phys. Soc. Japan, 67 (1998), 3031–3037 | DOI | MR | Zbl
[22] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[23] Olver P. J., “Moving frames and differential invariants in centro-affine geometry”, Lobachevskii J. Math., 31 (2010), 77–89 | DOI | MR | Zbl
[24] Ovsienko V., Schwartz R., Tabachnikov S., “The pentagram map: A discrete integrable system”, Comm. Math. Phys., 299 (2010), 409–446, arXiv: 0810.5605 | DOI | MR | Zbl
[25] Ovsienko V., Tabachnikov S., Projective differential geometry old and new. From the Schwarzian derivative to the cohomology of diffeomorphism groups, Cambridge Tracts in Mathematics, 165, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[26] Pinkall U., “Hamiltonian flows on the space of star-shaped curves”, Results Math., 27 (1995), 328–332 | MR | Zbl
[27] Sanders J. A., Wang J. P., “Integrable systems and their recursion operators”, Nonlinear Anal., 47 (2001), 5213–5240 | DOI | MR | Zbl
[28] Schwartz R. E., Tabachnikov S., “Elementary surprises in projective geometry”, Math. Intelligencer, 32 (2010), 31–34, arXiv: 0910.1952 | DOI | MR | Zbl
[29] Wang J. P., “A list of {$1+1$} dimensional integrable equations and their properties”, J. Nonlinear Math. Phys., 9:1 (2002), 213–233 | DOI | MR
[30] Wilczynski E. J., Projective differential geometry of curves and ruled surfaces, B. G. Teubner, Leipzig, 1906 | Zbl