From Quantum $A_N$ (Sutherland) to $E_8$ Trigonometric Model: Space-of-Orbits View
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A number of affine-Weyl-invariant integrable and exactly-solvable quantum models with trigonometric potentials is considered in the space of invariants (the space of orbits). These models are completely-integrable and admit extra particular integrals. All of them are characterized by (i) a number of polynomial eigenfunctions and quadratic in quantum numbers eigenvalues for exactly-solvable cases, (ii) a factorization property for eigenfunctions, (iii) a rational form of the potential and the polynomial entries of the metric in the Laplace–Beltrami operator in terms of affine-Weyl (exponential) invariants (the same holds for rational models when polynomial invariants are used instead of exponential ones), they admit (iv) an algebraic form of the gauge-rotated Hamiltonian in the exponential invariants (in the space of orbits) and (v) a hidden algebraic structure. A hidden algebraic structure for $(A{-}B{-}C{-}D)$-models, both rational and trigonometric, is related to the universal enveloping algebra $U_{gl_n}$. For the exceptional $(G{-}F{-}E)$-models, new, infinite-dimensional, finitely-generated algebras of differential operators occur. Special attention is given to the one-dimensional model with $BC_1\equiv(\mathbb{Z}_2)\oplus T$ symmetry. In particular, the $BC_1$ origin of the so-called TTW model is revealed. This has led to a new quasi-exactly solvable model on the plane with the hidden algebra $sl(2)\oplus sl(2)$.
Keywords: (quasi)-exact-solvability; space of orbits; trigonometric models; algebraic forms; Coxeter (Weyl) invariants; hidden algebra.
@article{SIGMA_2013_9_a2,
     author = {Alexander V. Turbiner},
     title = {From {Quantum} $A_N$ {(Sutherland)} to $E_8$ {Trigonometric} {Model:} {Space-of-Orbits} {View}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a2/}
}
TY  - JOUR
AU  - Alexander V. Turbiner
TI  - From Quantum $A_N$ (Sutherland) to $E_8$ Trigonometric Model: Space-of-Orbits View
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a2/
LA  - en
ID  - SIGMA_2013_9_a2
ER  - 
%0 Journal Article
%A Alexander V. Turbiner
%T From Quantum $A_N$ (Sutherland) to $E_8$ Trigonometric Model: Space-of-Orbits View
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a2/
%G en
%F SIGMA_2013_9_a2
Alexander V. Turbiner. From Quantum $A_N$ (Sutherland) to $E_8$ Trigonometric Model: Space-of-Orbits View. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a2/

[1] Boreskov K. G., López Vieyra J. C., Turbiner A. V., “Solvability of $F_4$ integrable system”, Internat. J. Modern Phys. A, 16 (2001), 4769–4801, arXiv: hep-th/0108021 | DOI | MR | Zbl

[2] Boreskov K. G., Turbiner A. V., López Vieyra J. C., “Sutherland-type trigonometric models, trigonometric invariants, and multivariate polynomials”, Special Functions and Orthogonal Polynomials, Contemp. Math., 471, Amer. Math. Soc., Providence, RI, 2008, 15–31, arXiv: 0805.0770 | DOI | MR | Zbl

[3] Boreskov K. G., Turbiner A. V., López Vieyra J. C., García M. A. G., “Sutherland-type trigonometric models, trigonometric invariants and multivariate polynomials. III: $E_8$ case”, Internat. J. Modern Phys. A, 26 (2011), 1399–1437, arXiv: 1012.1902 | DOI | MR | Zbl

[4] Brink L., Turbiner A. V., Wyllard N., “Hidden algebras of the (super) Calogero and Sutherland models”, J. Math. Phys., 39 (1998), 1285–1315, arXiv: hep-th/9705219 | DOI | MR | Zbl

[5] Chryssomalakos C., Turbiner A. V., “Canonical commutation relation preserving maps”, J. Phys. A: Math. Gen., 34 (2001), 10475–10485, arXiv: math-ph/0104004 | DOI | MR | Zbl

[6] García M. A. G., Turbiner A. V., Hidden algebra of Hamiltonian reduction, unpublished

[7] García M. A. G., Turbiner A. V., “The quantum $H_3$ integrable system”, Internat. J. Modern Phys. A, 25 (2010), 5567–5594, arXiv: 1007.0737 | DOI | MR | Zbl

[8] García M. A. G., Turbiner A. V., “The quantum $H_4$ integrable system”, Modern Phys. Lett. A, 26 (2011), 433–447, arXiv: 1011.2127 | DOI | MR | Zbl

[9] González-López A., Kamran N., Olver P. J., “Lie algebras of differential operators in two complex variables”, Amer. J. Math., 114 (1992), 1163–1185 | DOI | MR | Zbl

[10] Khastgir S. P., Pocklington A. J., Sasaki R., “Quantum Calogero–Moser models: integrability for all root systems”, J. Phys. A: Math. Gen., 33 (2000), 9033–9064, arXiv: hep-th/0005277 | DOI | MR | Zbl

[11] Lie S., Gruppenregister, v. 5, B. G. Teubner, Leipzig, 1924

[12] López Vieyra J. C., García M. A. G., Turbiner A. V., “Sutherland-type trigonometric models, trigonometric invariants and multivariable polynomials. II: $E_7$ case”, Modern Phys. Lett. A, 24 (2009), 1995–2004, arXiv: 0904.0484 | DOI | MR | Zbl

[13] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[14] Oshima T., “Completely integrable systems associated with classical root systems”, SIGMA, 3 (2007), 061, 50 pp., arXiv: math-ph/0502028 | MR | Zbl

[15] Rosenbaum M., Turbiner A. V., Capella A., “Solvability of the $G_2$ integrable system”, Internat. J. Modern Phys. A, 13 (1998), 3885–3903, arXiv: hep-th/9606092 | DOI | MR | Zbl

[16] Rühl W., Turbiner A. V., “Exact solvability of the Calogero and Sutherland models”, Modern Phys. Lett. A, 10 (1995), 2213–2221, arXiv: hep-th/9506105 | DOI | MR

[17] Smirnov Yu., Turbiner A. V., “Lie algebraic discretization of differential equations”, Modern Phys. Lett. A, 10 (1995), 1795–1802 | DOI | MR | Zbl

[18] Sutherland B., “Exact results for a quantum many-body problem in one dimension”, Phys. Rev. A, 4 (1971), 2019–2021 | DOI

[19] Tremblay F., Turbiner A. V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR | Zbl

[20] Turbiner A. V., “$BC_2$ Lame polynomials”, 1085 Special Session of American Mathematical Society (Tucson, 2012)

[21] Turbiner A. V., “From quantum $A_N$ (Calogero) to $H_4$ (rational) model”, SIGMA, 7 (2011), 071, 20 pp., arXiv: 1106.5017 | MR | Zbl

[22] Turbiner A. V., “Particular integrability and (quasi)-exact-solvability”, J. Phys. A: Math. Theor., 46 (2013), 025203, 9 pp., arXiv: 1206.2907 | DOI | MR

[23] Turbiner A. V., “Quasi-exactly-solvable problems and $\mathrm{sl}(2)$ algebra”, Comm. Math. Phys., 118 (1988), 467–474 | DOI | MR | Zbl

[24] Turbiner A. V., “Two-body elliptic model in proper variables: Lie algebraic forms and their discretizations”, Calogero-Moser-Sutherland Models (Montreal, 1997), CRM Ser. Math. Phys., Springer, New York, 2000, 473–484, arXiv: solv-int/9710004 | MR