@article{SIGMA_2013_9_a17,
author = {Vincent X. Genest and Luc Vinet and Alexei Zhedanov},
title = {Bispectrality of the {Complementary} {Bannai{\textendash}Ito} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a17/}
}
TY - JOUR AU - Vincent X. Genest AU - Luc Vinet AU - Alexei Zhedanov TI - Bispectrality of the Complementary Bannai–Ito Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a17/ LA - en ID - SIGMA_2013_9_a17 ER -
Vincent X. Genest; Luc Vinet; Alexei Zhedanov. Bispectrality of the Complementary Bannai–Ito Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a17/
[1] Bannai E., Ito T., Algebraic combinatorics, v. I, Association schemes, The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA, 1984 | MR
[2] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York, 1978 | MR | Zbl
[3] Chihara T. S., “On kernel polynomials and related systems”, Boll. Un. Mat. Ital. (3), 19 (1964), 451–459 | MR | Zbl
[4] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl
[5] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[6] Genest V. X., Vinet L., Zhedanov A., “The algebra of dual $-1$ {H}ahn polynomials and the {C}lebsch–{G}ordan problem of $sl_{-1}(2)$”, J. Math. Phys., 54 (2013), 023506, 13 pp., arXiv: 1207.4220 | DOI
[7] Genest V. X., Vinet L., Zhedanov A., “The Bannai–Ito polynomials as {R}acah coefficients of the $sl_{-1}(2)$ algebra”, Proc. Amer. Math. Soc. (to appear) , arXiv: 1205.4215
[8] Granovskiĭ Y. I., Lutzenko I. M., Zhedanov A. S., “Mutual integrability, quadratic algebras, and dynamical symmetry”, Ann. Physics, 217 (1992), 1–20 | DOI | MR | Zbl
[9] Jafarov E. I., Stoilova N. I., Van der Jeugt J., “Finite oscillator models: the Hahn oscillator”, J. Phys. A: Math. Theor., 44 (2011), 265203, 15 pp., arXiv: 1101.5310 | DOI | Zbl
[10] Jafarov E. I., Stoilova N. I., Van der Jeugt J., “The $\mathfrak{su}(2)_\alpha$ Hahn oscillator and a discrete Fourier–Hahn transform”, J. Phys. A: Math. Theor., 44 (2011), 355205, 18 pp., arXiv: 1106.1083 | DOI | Zbl
[11] Karlin S., McGregor J. L., “The differential equations of birth-and-death processes, and the Stieltjes moment problem”, Trans. Amer. Math. Soc., 85 (1957), 489–546 | DOI | MR | Zbl
[12] Karlin S., McGregor J. L., “The Hahn polynomials, formulas and an application”, Scripta Math., 26 (1961), 33–46 | MR | Zbl
[13] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their {$q$}-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[14] Leonard D. A., “Orthogonal polynomials, duality and association schemes”, SIAM J. Math. Anal., 13 (1982), 656–663 | DOI | MR | Zbl
[15] Marcellán F., Petronilho J., “Eigenproblems for tridiagonal $2$-Toeplitz matrices and quadratic polynomial mappings”, Linear Algebra Appl., 260 (1997), 169–208 | DOI | MR | Zbl
[16] Szeg{ö} G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975
[17] Terwilliger P., “The universal Askey–Wilson algebra and the equitable presentation of $U_q(sl_2)$”, SIGMA, 7 (2011), 099, 26 pp., arXiv: 1107.3544 | DOI | MR | Zbl
[18] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other”, Linear Algebra Appl., 330 (2001), 149–203, arXiv: math.RA/0406555 | DOI | MR | Zbl
[19] Terwilliger P., Vidunas R., “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl
[20] Tsujimoto S., Vinet L., Zhedanov A., “Dual {$-1$} {H}ahn polynomials: “classical” polynomials beyond the {L}eonard duality”, Proc. Amer. Math. Soc., 141 (2013), 959–970, arXiv: 1108.0132 | DOI | MR | Zbl
[21] Tsujimoto S., Vinet L., Zhedanov A., “Dunkl shift operators and Bannai–Ito polynomials”, Adv. Math., 229 (2012), 2123–2158, arXiv: 1106.3512 | DOI | MR | Zbl
[22] Tsujimoto S., Vinet L., Zhedanov A., “From $sl_q(2)$ to a parabosonic Hopf algebra”, SIGMA, 7 (2011), 093, 13 pp., arXiv: 1108.1603 | DOI | MR | Zbl
[23] Vidunas R., “Askey–Wilson relations and Leonard pairs”, Discrete Math., 308 (2008), 479–495, arXiv: math.QA/0511509 | DOI | MR | Zbl
[24] Vinet L., Zhedanov A., “A Bochner theorem for Dunkl polynomials”, SIGMA, 7 (2011), 020, 9 pp., arXiv: 1011.1457 | DOI | MR | Zbl
[25] Vinet L., Zhedanov A., “A limit $q=-1$ for the big $q$-Jacobi polynomials”, Trans. Amer. Math. Soc., 364 (2012), 5491–5507, arXiv: 1011.1429 | DOI | MR
[26] Vinet L., Zhedanov A., “A ‘missing’ family of classical orthogonal polynomials”, J. Phys. A: Math. Theor., 44 (2011), 085201, 16 pp., arXiv: 1011.1669 | DOI | MR | Zbl
[27] Vinet L., Zhedanov A., “Dual $-1$ Hahn polynomials and perfect state transfer”, J. Phys. Conf. Ser., 343 (2012), 012125, 10 pp., arXiv: 1110.6477 | DOI | MR
[28] Vinet L., Zhedanov A., “Para-Krawtchouk polynomials on a bi-lattice and a quantum spin chain with perfect state transfer”, J. Phys. A: Math. Theor., 45 (2012), 265304, 11 pp., arXiv: 1110.6475 | DOI | MR | Zbl
[29] Zhedanov A., ““{H}idden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl
[30] Zhedanov A., “Rational spectral transformations and orthogonal polynomials”, J. Comput. Appl. Math., 85 (1997), 67–86 | DOI | MR | Zbl
[31] Zhedanov A., “The “{H}iggs algebra” as a “quantum” deformation of {${\rm SU}(2)$}”, Modern Phys. Lett. A, 7 (1992), 507–512 | DOI | MR | Zbl