@article{SIGMA_2013_9_a16,
author = {Ian. M. Anderson and Mark E. Fels},
title = {The {Cauchy} {Problem} for {Darboux} {Integrable} {Systems} and {Non-Linear} {d'Alembert} {Formulas}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a16/}
}
TY - JOUR AU - Ian. M. Anderson AU - Mark E. Fels TI - The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a16/ LA - en ID - SIGMA_2013_9_a16 ER -
%0 Journal Article %A Ian. M. Anderson %A Mark E. Fels %T The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas %J Symmetry, integrability and geometry: methods and applications %D 2013 %V 9 %U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a16/ %G en %F SIGMA_2013_9_a16
Ian. M. Anderson; Mark E. Fels. The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a16/
[1] Anderson I. M., Fels M. E., Bäcklund transformations for Darboux integrable differential systems, arXiv: 1108.5443
[2] Anderson I. M., Fels M. E., “Exterior differential systems with symmetry”, Acta Appl. Math., 87 (2005), 3–31 | DOI | MR | Zbl
[3] Anderson I. M., Fels M. E., “Symmetry reduction of exterior differential systems and Bäcklund transformations for {PDE} in the plane”, Acta Appl. Math., 120 (2012), 29–60, arXiv: 1110.5777 | DOI | MR
[4] Anderson I. M., Fels M. E., Vassiliou P. J., “Superposition formulas for exterior differential systems”, Adv. Math., 221 (2009), 1910–1963 | DOI | MR | Zbl
[5] Bryant R. L., “An introduction to Lie groups and symplectic geometry”, Geometry and Quantum Field Theory (Park City, UT, 1991), IAS/Park City Math. Ser., 1, Amer. Math. Soc., Providence, RI, 1995, 5–181 | MR | Zbl
[6] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[7] Bryant R. L., Griffiths P. A., “Characteristic cohomology of differential systems. II: Conservation laws for a class of parabolic equations”, Duke Math. J., 78 (1995), 531–676 | DOI | MR | Zbl
[8] Bryant R. L., Griffiths P. A., Hsu L., “Hyperbolic exterior differential systems and their conservation laws, I”, Selecta Math. (N.S.), 1 (1995), 21–112 | DOI | MR | Zbl
[9] Cariñena J. F., Grabowski J., Marmo G., “Superposition rules, Lie theorem, and partial differential equations”, Rep. Math. Phys., 60 (2007), 237–258, arXiv: math-ph/0610013 | DOI | MR | Zbl
[10] Dubrov B. M., Komrakov B. P., “The constructive equivalence problem in differential geometry”, Sb. Math., 191 (2000), 655–681 | DOI | MR | Zbl
[11] Duzhin S. V., Lychagin V. V., “Symmetries of distributions and quadrature of ordinary differential equations”, Acta Appl. Math., 24 (1991), 29–57 | MR | Zbl
[12] Fels M. E., “Exterior differential systems with symmetry”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 351–366 | DOI | MR
[13] Gardner R. B., Kamran N., “Characteristics and the geometry of hyperbolic equations in the plane”, J. Differential Equations, 104 (1993), 60–116 | DOI | MR | Zbl
[14] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, Wiley Classics Library, John Wiley Sons Inc., New York, 1996
[15] Olver P. J., Applications of {L}ie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[16] Vassiliou P. J., “Cauchy problem for a Darboux integrable wave map system and equations of Lie type”, SIGMA (to appear)