@article{SIGMA_2013_9_a14,
author = {Andrey V. Tsiganov},
title = {On {a~Trivial} {Family} of {Noncommutative} {Integrable} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a14/}
}
Andrey V. Tsiganov. On a Trivial Family of Noncommutative Integrable Systems. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a14/
[1] Abraham R., Marsden J. E., Foundations of mechanics, 2nd ed., Benjamin/Cummings Publishing Co. Inc., Reading, Mass., 1978 | MR | Zbl
[2] Arnol'd V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, 2nd ed., Springer-Verlag, New York, 1989 | DOI | MR
[3] Arsie A., Lorenzoni P., “On bi-Hamiltonian deformations of exact pencils of hydrodynamic type”, J. Phys. A: Math. Theor., 44 (2011), 225205, 31 pp., arXiv: 1101.0167 | DOI | MR | Zbl
[4] Ayadi V., Fehér L., Görbe T. F., “Superintegrability of rational Ruijsenaars–Schneider systems and their action-angle duals”, J. Geom. Symmetry Phys., 27 (2012), 27–44, arXiv: 1209.1314 | DOI
[5] Benenti S., Chanu C., Rastelli G., “The super-separability of the three-body inverse-square Calogero system”, J. Math. Phys., 41 (2000), 4654–4678 | DOI | MR | Zbl
[6] Broadbridge P., Chanu C. M., Miller Jr. W., “Solutions of Helmholtz and Schrödinger equations with side condition and nonregular separation of variables”, SIGMA, 8 (2012), 089, 31 pp., arXiv: 1209.2019 | DOI
[7] Calogero F., “Solution of a three-body problem in one dimension”, J. Math. Phys., 10 (1969), 2191–2196 | DOI | MR
[8] Das A., Okubo S., “A systematic study of the Toda lattice”, Ann. Physics, 190 (1989), 215–232 | DOI | MR
[9] Degiovanni L., Magri F., Sciacca V., “On deformation of {P}oisson manifolds of hydrodynamic type”, Comm. Math. Phys., 253 (2005), 1–24, arXiv: nlin.SI/0103052 | DOI | MR | Zbl
[10] Fernandes R. L., “On the master symmetries and bi-{H}amiltonian structure of the Toda lattice”, J. Phys. A: Math. Gen., 26 (1993), 3797–3803 | DOI | MR | Zbl
[11] Gonera C., Nutku Y., “Super-integrable {C}alogero-type systems admit maximal number of Poisson structures”, Phys. Lett. A, 285 (2001), 301–306, arXiv: nlin.SI/0105056 | DOI | MR | Zbl
[12] Grammaticos B., Dorizzi B., Ramani A., “Hamiltonians with high-order integrals and the “weak-Painlevé” concept”, J. Math. Phys., 25 (1984), 3470–3473 | DOI | MR
[13] Griffiths P., Harris J., Principles of algebraic geometry, Wiley Classics Library, John Wiley Sons Inc., New York, 1994 | MR
[14] Grigoryev Yu. A., Tsiganov A. V., “On the Darboux–Nijenhuis variables for the open Toda lattice”, SIGMA, 2 (2006), 097, 15 pp., arXiv: nlin.SI/0701004 | DOI | MR | Zbl
[15] Grigoryev Yu. A., Tsiganov A. V., “Separation of variables for the generalized Henon–Heiles system and system with quartic potential”, J. Phys. A: Math. Theor., 44 (2011), 255202, 9 pp., arXiv: 1012.0468 | DOI | MR | Zbl
[16] Grigoryev Yu. A., Tsiganov A. V., “Symbolic software for separation of variables in the Hamilton–Jacobi equation for the $L$-systems”, Regul. Chaotic Dyn., 10 (2005), 413–422, arXiv: nlin.SI/0505047 | DOI | MR
[17] Ibort A., “The geometry of dynamics”, Extracta Math., 11 (1996), 80–105 | MR
[18] Ibort A., Magri F., Marmo G., “Bihamiltonian structures and Stäckel separability”, J. Geom. Phys., 33 (2000), 210–228 | DOI | MR | Zbl
[19] Jacobi C. G. J., Vorlesungen über dynamik, G. Reimer, Berlin, 1884
[20] Jost R., “Poisson brackets (an unpedagogical lecture)”, Rev. Modern Phys., 36 (1964), 572–579 | DOI
[21] Khesin B., Tabachnikov S., “Contact complete integrability”, Regul. Chaotic Dyn., 15 (2010), 504–520, arXiv: 0910.0375 | DOI | MR | Zbl
[22] Kuznetsov V. B., Tsiganov A. V., “Separation of variables for the quantum relativistic Toda lattices”, J. Math. Sci., 80 (1994), 1802–1810, arXiv: hep-th/9402111 | DOI
[23] Lichnerowicz A., “Les variétés de {P}oisson et leurs algèbres de Lie associées”, J. Differential Geometry, 12 (1977), 253–300 | MR | Zbl
[24] Maciejewski A. J., Przybylska M., Tsiganov A. V., “On algebraic construction of certain integrable and super-integrable systems”, Phys. D, 240 (2011), 1426–1448, arXiv: 1011.3249 | DOI | MR | Zbl
[25] Magri F., Casati P., Falqui G., Pedroni M., “Eight lectures on integrable systems”, Integrability of Nonlinear Systems (Pondicherry, 1996), Lecture Notes in Phys., 495, Springer, Berlin, 1997, 256–296 | DOI | MR | Zbl
[26] Oevel W., Fuchssteiner B., Zhang H., Ragnisco O., “Mastersymmetries, angle variables, and recursion operator of the relativistic Toda lattice”, J. Math. Phys., 30 (1989), 2664–2670 | DOI | MR | Zbl
[27] Olver P. J., Rosenau P., “Group-invariant solutions of differential equations”, SIAM J. Appl. Math., 47 (1987), 263–278 | DOI | MR | Zbl
[28] Ovsiannikov L. V., Group analysis of differential equations, Academic Press Inc., New York, 1982 | MR | Zbl
[29] Suris Y. B., “On the bi-Hamiltonian structure of Toda and relativistic Toda lattices”, Phys. Lett. A, 180 (1993), 419–429 | DOI | MR
[30] Tempesta P., Tondo G., “Generalized Lenard chains, separation of variables, and superintegrability”, Phys. Rev. E, 85 (2012), 046602, 11 pp., arXiv: 1205.6937 | DOI
[31] Tsiganov A. V., “On bi-integrable natural Hamiltonian systems on Riemannian manifolds”, J. Nonlinear Math. Phys., 18 (2011), 245–268, arXiv: 1006.3914 | DOI | MR | Zbl
[32] Tsiganov A. V., “On natural {P}oisson bivectors on the sphere”, J. Phys. A: Math. Theor., 44 (2011), 105203, 21 pp., arXiv: 1010.3492 | DOI | MR | Zbl
[33] Tsiganov A. V., “On the Poisson structures for the nonholonomic Chaplygin and Veselova problems”, Regul. Chaotic Dyn., 17 (2012), 439–450 | DOI | MR | Zbl
[34] Tsiganov A. V., “On two different bi-Hamiltonian structures for the Toda lattice”, J. Phys. A: Math. Theor., 40 (2007), 6395–6406, arXiv: nlin.SI/0701062 | DOI | MR | Zbl
[35] Waksjö C., Rauch-Wojciechowski S., “How to find separation coordinates for the {H}amilton–{J}acobi equation: a criterion of separability for natural {H}amiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 301–348 | DOI | MR | Zbl