Courant Algebroids. A Short History
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The search for a geometric interpretation of the constrained brackets of Dirac led to the definition of the Courant bracket. The search for the right notion of a “double” for Lie bialgebroids led to the definition of Courant algebroids. We recount the emergence of these concepts.
Keywords: Courant algebroid; Dorfman bracket; Lie algebroid; Lie bialgebroid; generalized geometry; Dirac structure; Loday algebra; Leibniz algebra; derived bracket.
@article{SIGMA_2013_9_a13,
     author = {Yvette Kosmann-Schwarzbach},
     title = {Courant {Algebroids.} {A} {Short} {History}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a13/}
}
TY  - JOUR
AU  - Yvette Kosmann-Schwarzbach
TI  - Courant Algebroids. A Short History
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a13/
LA  - en
ID  - SIGMA_2013_9_a13
ER  - 
%0 Journal Article
%A Yvette Kosmann-Schwarzbach
%T Courant Algebroids. A Short History
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a13/
%G en
%F SIGMA_2013_9_a13
Yvette Kosmann-Schwarzbach. Courant Algebroids. A Short History. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a13/

[1] Bressler P., “The first Pontryagin class”, Compos. Math., 143 (2007), 1127–1163, arXiv: math.AT/0509563 | DOI | MR | Zbl

[2] Coste A., Dazord P., Weinstein A., “Groupoïdes symplectiques”, Publ. Dép. Math. Nouvelle Sér. A, 2, Univ. Claude Bernard-Lyon 1, 1987, 1–62 | MR | Zbl

[3] Courant T., “Dirac manifolds”, Trans. Amer. Math. Soc., 319 (1990), 631–661 | DOI | MR | Zbl

[4] Courant T., Weinstein A., “Beyond Poisson structures”, Actions hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, 1986), Travaux en Cours, 27, Hermann, Paris, 1988, 39–49 | MR

[5] Dirac P. A. M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, 2, Belfer Graduate School of Science, New York, 1964 | MR

[6] Dorfman I. Ya., Dirac structures and integrability of nonlinear evolution equations, Nonlinear Science: Theory and Applications, John Wiley Sons Ltd., Chichester, 1993 | MR

[7] Dorfman I. Ya., “Dirac structures of integrable evolution equations”, Phys. Lett. A, 125 (1987), 240–246 | DOI | MR

[8] Drinfel'd V. G., “Hamiltonian structures on {L}ie groups, {L}ie bialgebras and the geometric meaning of classical {Y}ang–{B}axter equations”, Soviet Math. Doklady, 27 (1983), 68–71 | MR

[9] Grabowski J., Marmo G., “The graded {J}acobi algebras and (co)homology”, J. Phys. A: Math. Gen., 36 (2003), 161–181, arXiv: math.DG/0207017 | DOI | MR | Zbl

[10] Graña M., Minasian R., Petrini M., Waldram D., “{$T$}-duality, generalized geometry and non-geometric backgrounds”, J. High Energy Phys., 2009:4 (2009), 075, 39 pp., arXiv: 0807.4527 | DOI | MR

[11] Gualtieri M., Generalized complex geometry, Ann. of Math. (2), 174 (2011), 75–123, arXiv: math.DG/0703298 | DOI | MR | Zbl

[12] Hitchin N., “Generalized {C}alabi–{Y}au manifolds”, Q. J. Math., 54 (2003), 281–308, arXiv: math.DG/0209099 | DOI | MR | Zbl

[13] Ikeda N., “Chern–Simons gauge theory coupled with BF theory”, Internat. J. Modern Phys. A, 18 (2003), 2689–2701, arXiv: hep-th/0203043 | DOI | MR

[14] Kinyon M. K., Weinstein A., “Leibniz algebras, {C}ourant algebroids, and multiplications on reductive homogeneous spaces”, Amer. J. Math., 123 (2001), 525–550, arXiv: math.DG/0006022 | DOI | MR | Zbl

[15] Kosmann-Schwarzbach Y., “Derived brackets”, Lett. Math. Phys., 69 (2004), 61–87, arXiv: math.DG/0312524 | DOI | MR | Zbl

[16] Kosmann-Schwarzbach Y., “Exact {G}erstenhaber algebras and Lie bialgebroids”, Acta Appl. Math., 41 (1995), 153–165 | DOI | MR | Zbl

[17] Kosmann-Schwarzbach Y., “From Poisson algebras to Gerstenhaber algebras”, Ann. Inst. Fourier (Grenoble), 46 (1996), 1243–1274 | DOI | MR | Zbl

[18] Kosmann-Schwarzbach Y., “Jacobian quasi-bialgebras and quasi-Poisson Lie groups”, Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), Contemp. Math., 132, eds. M. Gotay, J. E. Marsden, V. Moncrief, Amer. Math. Soc., Providence, RI, 1992, 459–489 | DOI | MR

[19] Kosmann-Schwarzbach Y., “Poisson manifolds, Lie algebroids, modular classes: a survey”, SIGMA, 4 (2008), 005, 30 pp., arXiv: 0710.3098 | DOI | MR | Zbl

[20] Kosmann-Schwarzbach Y., “Quasi, twisted, and all that {$\ldots$} in {P}oisson geometry and {L}ie algebroid theory”, The Breadth of Symplectic and {P}oisson Geometry, Festschrift in Honor of Alan Weinstein, Progr. Math., 232, eds. J. E. Marsden, T. S. Ratiu, Birkhäuser Boston, Boston, MA, 2005, 363–389, arXiv: math.DG/0310359 | DOI | MR | Zbl

[21] Kosmann-Schwarzbach Y. (Editor), Siméon-Denis Poisson. Les Mathématiques au service de la science, Éditions de l'École Polytechnique (to appear)

[22] Kosmann-Schwarzbach Y., Magri F., “Poisson–{N}ijenhuis structures”, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 35–81 | MR | Zbl

[23] Kostant B., Sternberg S., “Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras”, Ann. Physics, 176 (1987), 49–113 | DOI | MR | Zbl

[24] Li-Bland D., LA-Courant algebroids and their applications, Ph. D. thesis, University of Toronto, 2012, arXiv: 1204.2796

[25] Lichnerowicz A., “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Differential Geometry, 12 (1977), 253–300 | MR | Zbl

[26] Littlejohn R. G., “A guiding center Hamiltonian: a new approach”, J. Math. Phys., 20 (1979), 2445–2458 | DOI | MR | Zbl

[27] Littlejohn R. G., “Geometry and guiding center motion”, Fluids and Plasmas: Geometry and Dynamics (Boulder, Colo., 1983), Contemp. Math., 28, ed. J. E. Marsden, Amer. Math. Soc., Providence, RI, 1984, 151–167 | DOI | MR

[28] Littlejohn R. G., “Hamiltonian formulation of guiding center motion”, Phys. Fluids, 24 (1981), 1730–1749 | DOI | MR | Zbl

[29] Liu Z.-J., Weinstein A., Xu P., “Manin triples for Lie bialgebroids”, J. Differential Geom., 45 (1997), 547–574, arXiv: dg-ga/9508013 | MR | Zbl

[30] Loday J.-L., “Une version non commutative des algèbres de {L}ie: les algèbres de {L}eibniz”, Enseign. Math. (2), 39 (1993), 269–293 | MR | Zbl

[31] Mackenzie K. C. H., “Double Lie algebroids and second-order geometry, I”, Adv. Math., 94 (1992), 180–239 | DOI | MR | Zbl

[32] Mackenzie K. C. H., “Double Lie algebroids and second-order geometry, II”, Adv. Math., 154 (2000), 46–75, arXiv: dg-ga/9712013 | DOI | MR | Zbl

[33] Mackenzie K. C. H., “Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids”, Electron. Res. Announc. Amer. Math. Soc., 4 (1998), 74–87 | DOI | MR | Zbl

[34] Mackenzie K. C. H., “Ehresmann doubles and Drinfel'd doubles for Lie algebroids and Lie bialgebroids”, J. Reine Angew. Math., 658 (2011), 193–245, arXiv: math.DG/0611799 | DOI | MR | Zbl

[35] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[36] Mackenzie K. C. H., Xu P., “Lie bialgebroids and Poisson groupoids”, Duke Math. J., 73 (1994), 415–452 | DOI | MR | Zbl

[37] Mokhov O. I., Novikov S. P., Pogrebkov A. K., “Irina Yakovlevna Dorfman”, Russ. Math. Surv., 50 (1995), 1241–1246 | DOI | MR | Zbl

[38] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl

[39] Pradines J., “Théorie de {L}ie pour les groupoïdes différentiables. {C}alcul différenetiel dans la catégorie des groupoïdes infinitésimaux”, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A245–A248 | MR

[40] Roytenberg D., “A{KSZ}-{BV} formalism and {C}ourant algebroid-induced topological field theories”, Lett. Math. Phys., 79 (2007), 143–159, arXiv: hep-th/0608150 | DOI | MR | Zbl

[41] Roytenberg D., Courant algebroids, derived brackets and even symplectic supermanifolds, Ph. D. thesis, University of California, Berkeley, 1999, arXiv: math.DG/9910078 | MR

[42] Roytenberg D., “Courant–Dorfman algebras and their cohomology”, Lett. Math. Phys., 90 (2009), 311–351, arXiv: 0902.4862 | DOI | MR | Zbl

[43] Roytenberg D., “On the structure of graded symplectic supermanifolds and Courant algebroids”, Quantization, {P}oisson Brackets and Beyond (Manchester, 2001), Contemp. Math., 315, ed. T. Voronov, Amer. Math. Soc., Providence, RI, 2002, 169–185, arXiv: math.SG/0203110 | DOI | MR | Zbl

[44] Roytenberg D., “Quasi-Lie bialgebroids and twisted Poisson manifolds”, Lett. Math. Phys., 61 (2002), 123–137, arXiv: math.QA/0112152 | DOI | MR | Zbl

[45] Ševera P., Letters to Alan Weinstein written between 1998 and 2000, No 1, 1998; No 7 , 2000 http://sophia.dtp.fmph.uniba.sk/s̃evera/letters/ | Zbl

[46] Ševera P., Weinstein A., “Poisson geometry with a 3-form background”, Progr. Theoret. Phys. Suppl., 144 (2001), 145–154, arXiv: math.SG/0107133 | DOI | MR

[47] Skinner R., Rusk R., “Generalized {H}amiltonian dynamics. I: {F}ormulation on $T^{\ast} Q\oplus TQ$”, J. Math. Phys., 24 (1983), 2589–2594 | DOI | MR | Zbl

[48] Uchino K., “Remarks on the definition of a Courant algebroid”, Lett. Math. Phys., 60 (2002), 171–175, arXiv: math.DG/0204010 | DOI | MR | Zbl

[49] Vaintrob A. Yu., “Lie algebroids and homological vector fields”, Russ. Math. Surv., 52 (1997), 428–429 | DOI | MR | Zbl

[50] Voronov T., “Graded manifolds and Drinfeld doubles for Lie bialgebroids”, Quantization, Poisson Brackets and Beyond (Manchester, 2001), Contemp. Math., 315, ed. T. Voronov, Amer. Math. Soc., Providence, RI, 2002, 131–168, arXiv: math.DG/0105237 | DOI | MR | Zbl

[51] Voronov T., “$Q$-manifolds and Mackenzie theory”, Comm. Math. Phys., 315 (2012), 279–310, arXiv: 1206.3622 | DOI | MR | Zbl

[52] Weinstein A., “Coisotropic calculus and Poisson groupoids”, J. Math. Soc. Japan, 40 (1988), 705–727 | DOI | MR | Zbl

[53] Weinstein A., “Poisson geometry”, Differential Geom. Appl., 9 (1998), 213–238 | DOI | MR | Zbl

[54] Weinstein A., “Sophus Lie and symplectic geometry”, Exposition. Math., 1 (1983), 95–96 | MR | Zbl

[55] Yoshimura H., Marsden J. E., “Dirac structures in Lagrangian mechanics. I: Implicit Lagrangian systems”, J. Geom. Phys., 57 (2006), 133–156 | DOI | MR | Zbl