@article{SIGMA_2013_9_a12,
author = {Arundhati Dasgupta},
title = {Semiclassical {Loop} {Quantum} {Gravity} and {Black} {Hole} {Thermodynamics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a12/}
}
Arundhati Dasgupta. Semiclassical Loop Quantum Gravity and Black Hole Thermodynamics. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a12/
[1] Álvarez N., Gambini R., Pullin J., “Local Hamiltonian for spherically symmetric gravity coupled to a scalar field”, Phys. Rev. Lett., 108 (2012), 051301, 4 pp., arXiv: 1111.4962 | DOI | MR
[2] Ambjørn J., Jurkiewicz J., Loll R., “Lattice quantum gravity — an update”, PoS Proc. Sci., LATTICE2010, 2010, 014, 14 pp., arXiv: 1105.5582
[3] Ashtekar A., Introduction to loop quantum gravity, arXiv: 1201.4598
[4] Ashtekar A., Baez J., Corichi A., Krasnov K., “Quantum geometry and black hole entropy”, Phys. Rev. Lett., 80 (1998), 904–907, arXiv: gr-qc/9710007 | DOI | MR | Zbl
[5] Ashtekar A., Rovelli C., Smolin L., “Weaving a classical metric with quantum threads”, Phys. Rev. Lett., 69 (1992), 237–240, arXiv: hep-th/9203079 | DOI | MR | Zbl
[6] Barbero J. F., Lewandowski J., Villasenor E. J., Quantum isolated horizons and black hole entropy, arXiv: 1203.0174
[7] Bardeen J. M., Carter B., Hawking S. W., “The four laws of black hole mechanics”, Comm. Math. Phys., 31 (1973), 161–170 | DOI | MR | Zbl
[8] Barvinsky A. O., Frolov V. P., Zel'nikov A. I., “The wave function of a black hole and the dynamical origin of entropy”, Phys. Rev. D, 51 (1995), 1741–1763 | DOI | MR
[9] Bekenstein J. D., “Black holes and entropy”, Phys. Rev. D, 7 (1973), 2333–2346 | DOI | MR
[10] Bianchi E., Magliaro E., Perini C., “Coherent spin-networks”, Phys. Rev. D, 82 (2010), 024012, 7 pp., arXiv: 0912.4054 | DOI
[11] Bombelli L., Koul R. K., Lee J., Sorkin R. D., “Quantum source of entropy for black holes”, Phys. Rev. D, 34 (1986), 373–383 | DOI | MR | Zbl
[12] Borja E. F., Garay I., Strobel E., “Revisiting the quantum scalar field in spherically symmetric quantum gravity”, Classical Quantum Gravity, 29 (2012), 145012, 19 pp., arXiv: 1201.4229 | DOI | MR | Zbl
[13] Brown J. D., York Jr. J. W., “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D, 47 (1993), 1407–1419, arXiv: gr-qc/9209012 | DOI | MR
[14] Corichi A., “Black holes in loop quantum gravity: recent advances”, J. Phys. Conf. Ser., 140 (2008), 012006, 13 pp., arXiv: 0901.1302 | DOI
[15] Dasgupta A., Entanglement entropy and Bekenstein–Hawking entropy of black holes, in preparation
[16] Dasgupta A., “Coherent states for black holes”, J. Cosmol. Astropart. Phys., 2003:8 (2003), 004, 36 pp., arXiv: hep-th/0305131 | DOI | MR | Zbl
[17] Dasgupta A., “Entropic origin of Hawking radiation”, Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity (Paris, 2009), eds. T. Damour, R. T. Jantzen, R. Ruffini, World Scientific, Singapore, 2012, 1132–1134, arXiv: 1003.0441 | DOI
[18] Dasgupta A., “Semi-classical quantization of spacetimes with apparent horizons”, Classical Quantum Gravity, 23 (2006), 635–672, arXiv: gr-qc/0505017 | DOI | MR
[19] Dasgupta A., “Semiclassical horizons”, Can. J. Phys., 86 (2008), 659–662, arXiv: 0711.0714 | DOI
[20] Dasgupta A., “Time evolution of horizons”, J. Modern Phys., 3 (2012), 1289–1297, arXiv: 1007.1437 | DOI
[21] Dittrich B., Introduction to loop quantum gravity, Lectures given at University of New Brunswick, 2006
[22] Doná P., Speziale S., Introductory lectures to loop quantum gravity, arXiv: 1007.0402
[23] Freidel L., Livine E. R., “${\rm U}(N)$ coherent states for loop quantum gravity”, J. Math. Phys., 52 (2011), 052502, 21 pp., arXiv: 1005.2090 | DOI | MR
[24] Gambini R., Pullin J., “Spherically symmetric gravity coupled to a scalar field with a local Hamiltonian: the complete initial-boundary value problem using metric variables”, Classical Quantum Gravity, 30 (2013), 025012, 7 pp., arXiv: 1207.6028 | DOI
[25] Hall B. C., “The Segal–Bargmann “coherent state” transform for compact Lie groups”, J. Funct. Anal., 122 (1994), 103–151 | DOI | MR | Zbl
[26] Hawking S. W., “Black holes in general relativity”, Comm. Math. Phys., 25 (1972), 152–166 | DOI | MR
[27] Hawking S. W., “Particle creation by black holes”, Comm. Math. Phys., 43 (1975), 199–220 | DOI | MR
[28] Hawking S. W., Horowitz G. T., “The gravitational Hamiltonian, action, entropy and surface terms”, Classical Quantum Gravity, 13 (1996), 1487–1498, arXiv: gr-qc/9501014 | DOI | MR | Zbl
[29] Husain V., Mann R. B., “Thermodynamics and phases in quantum gravity”, Classical Quantum Gravity, 26 (2009), 075010, 6 pp., arXiv: 0812.0399 | DOI | MR | Zbl
[30] Husain V., Terno D., “Dynamics and entanglement in spherically symmetric quantum gravity”, Phys. Rev. D, 81 (2010), 044039, 11 pp., arXiv: 0903.1471 | DOI
[31] Husain V., Winkler O., “Quantum Hamiltonian for gravitational collapse”, Phys. Rev. D, 73 (2006), 124007, 8 pp., arXiv: gr-qc/0601082 | DOI | MR
[32] Magliaro E., Marcianó A., Perini C., “Coherent states for FLRW space-times in loop quantum gravity”, Phys. Rev. D, 83 (2011), 044029, 9 pp., arXiv: 1011.5676 | DOI
[33] Majumdar P., “Holography, gauge-gravity connection and black hole entropy”, Internat. J. Modern Phys. A, 24 (2009), 3414–3425, arXiv: 0903.5080 | DOI | MR | Zbl
[34] Prigogine I., From being to becoming: time and complexity in physical sciences, Freeman, San Francisco, CA, 1980
[35] Reinsch M. W., Morehead J. J., “Asymptotics of Clebsch–Gordan coefficients”, J. Math. Phys., 40 (1999), 4782–4806, arXiv: math-ph/9906007 | DOI | MR | Zbl
[36] Sahlmann H., Thiemann T., “Towards the QFT on curved spacetime limit of QGR. I: A general scheme”, Classical Quantum Gravity, 23 (2006), 867–908, arXiv: gr-qc/0207030 | DOI | MR | Zbl
[37] Solodukhin S., “Entanglement entropy of black holes”, Living Rev. Relativity, 14 (2011), 8, 96 pp., arXiv: 1104.3712
[38] Srednicki M., “Entropy and area”, Phys. Rev. Lett., 71 (1993), 666–669, arXiv: hep-th/9303048 | DOI | MR | Zbl
[39] Strominger A., Vafa C., “Microscopic origin of the Bekenstein–Hawking entropy”, Phys. Lett. B, 379 (1996), 99–104, arXiv: hep-th/9601029 | DOI | MR
[40] 't Hooft G., “On the quantum structure of a black hole”, Nuclear Phys. B, 256 (1985), 727–745 | DOI | MR
[41] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[42] Thiemann T., Winkler O., “Gauge field theory coherent states (GCS). II: Peakedness properties”, Classical Quantum Gravity, 18 (2001), 2561–2636, arXiv: hep-th/0005237 | DOI | MR | Zbl
[43] Varshalovich D. A., Moskalev A. N., Khersonskii V. K., Quantum theory of angular momentum, World Scientific Publishing Co. Inc., Teaneck, NJ, 1988 | MR