@article{SIGMA_2013_9_a11,
author = {Frank B. Estabrook},
title = {Specialized {Orthonormal} {Frames} and {Embedding}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a11/}
}
Frank B. Estabrook. Specialized Orthonormal Frames and Embedding. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a11/
[1] Estabrook F. B., “Mathematical structure of tetrad equations for vacuum relativity”, Phys. Rev. D, 71 (2005), 044004, 5 pp., arXiv: gr-qc/0411029 | DOI | MR
[2] Estabrook F. B., “The Hilbert Lagrangian and isometric embedding: tetrad formulation of Regge–Teitelboim gravity”, J. Math. Phys., 51 (2010), 042502, 10 pp., arXiv: 0908.0365 | DOI | MR
[3] Estabrook F. B., Wahlquist H. D., “Moving frame formulations of $4$-geometries having isometries”, Classical Quantum Gravity, 13 (1996), 1333–1338 | DOI | MR | Zbl
[4] Ivey T. A., Landsberg J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[5] Paston S. A., Sheykin A. A., “Embeddings for the Schwarzschild metric: classification and new results”, Classical Quantum Gravity, 29 (2012), 095022, 17 pp., arXiv: 1202.1204 | DOI | MR | Zbl
[6] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, Cambridge Monographs on Mathematical Physics, 2nd ed., Cambridge University Press, Cambridge, 2003 | DOI | MR