Specialized Orthonormal Frames and Embedding
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss some specializations of the frames of flat orthonormal frame bundles over geometries of indefinite signature, and the resulting symmetries of families of embedded Riemannian or pseudo-Riemannian geometries. The specializations are closed sets of linear constraints on the connection 1-forms of the framing. The embeddings can be isometric, as in minimal surfaces or Regge–Teitelboim gravity, or torsion-free, as in Einstein vacuum gravity. Involutive exterior differential systems are given, and their Cartan character tables calculated to express the well-posedness of the underlying partial differential embedding and specialization equations.
Keywords: embedding; orthonormal frames; Cartan theory.
@article{SIGMA_2013_9_a11,
     author = {Frank B. Estabrook},
     title = {Specialized {Orthonormal} {Frames} and {Embedding}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a11/}
}
TY  - JOUR
AU  - Frank B. Estabrook
TI  - Specialized Orthonormal Frames and Embedding
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a11/
LA  - en
ID  - SIGMA_2013_9_a11
ER  - 
%0 Journal Article
%A Frank B. Estabrook
%T Specialized Orthonormal Frames and Embedding
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a11/
%G en
%F SIGMA_2013_9_a11
Frank B. Estabrook. Specialized Orthonormal Frames and Embedding. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a11/

[1] Estabrook F. B., “Mathematical structure of tetrad equations for vacuum relativity”, Phys. Rev. D, 71 (2005), 044004, 5 pp., arXiv: gr-qc/0411029 | DOI | MR

[2] Estabrook F. B., “The Hilbert Lagrangian and isometric embedding: tetrad formulation of Regge–Teitelboim gravity”, J. Math. Phys., 51 (2010), 042502, 10 pp., arXiv: 0908.0365 | DOI | MR

[3] Estabrook F. B., Wahlquist H. D., “Moving frame formulations of $4$-geometries having isometries”, Classical Quantum Gravity, 13 (1996), 1333–1338 | DOI | MR | Zbl

[4] Ivey T. A., Landsberg J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[5] Paston S. A., Sheykin A. A., “Embeddings for the Schwarzschild metric: classification and new results”, Classical Quantum Gravity, 29 (2012), 095022, 17 pp., arXiv: 1202.1204 | DOI | MR | Zbl

[6] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, Cambridge Monographs on Mathematical Physics, 2nd ed., Cambridge University Press, Cambridge, 2003 | DOI | MR