Invertible Darboux Transformations
Symmetry, integrability and geometry: methods and applications, Tome 9 (2013) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For operators of many different kinds it has been proved that (generalized) Darboux transformations can be built using so called Wronskian formulae. Such Darboux transformations are not invertible in the sense that the corresponding mappings of the operator kernels are not invertible. The only known invertible ones were Laplace transformations (and their compositions), which are special cases of Darboux transformations for hyperbolic bivariate operators of order 2. In the present paper we find a criteria for a bivariate linear partial differential operator of an arbitrary order $d$ to have an invertible Darboux transformation. We show that Wronkian formulae may fail in some cases, and find sufficient conditions for such formulae to work.
Keywords: Darboux transformations; Laplace transformations; 2D Schrödinger operator; invertible Darboux transformations.
@article{SIGMA_2013_9_a1,
     author = {Ekaterina Shemyakova},
     title = {Invertible {Darboux} {Transformations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2013},
     volume = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a1/}
}
TY  - JOUR
AU  - Ekaterina Shemyakova
TI  - Invertible Darboux Transformations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2013
VL  - 9
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a1/
LA  - en
ID  - SIGMA_2013_9_a1
ER  - 
%0 Journal Article
%A Ekaterina Shemyakova
%T Invertible Darboux Transformations
%J Symmetry, integrability and geometry: methods and applications
%D 2013
%V 9
%U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a1/
%G en
%F SIGMA_2013_9_a1
Ekaterina Shemyakova. Invertible Darboux Transformations. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a1/

[1] Bagrov V. G., Samsonov B. F., “Darboux transformation of the Schrödinger equation”, Phys. Part. Nuclei, 28 (1997), 374–397 | DOI | MR

[2] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. II, Gauthier-Villars, Paris, 1889 | Zbl

[3] Ganzha E. I., “On Laplace and Dini transformations for multidimensional equations with a decomposable principal symbol”, Program. Comput. Softw., 38 (2012), 150–155 | DOI | Zbl

[4] Grinevich P. G., Novikov S. P., Discrete $SL_2$ connections and self-adjoint difference operators on the triangulated 2-manifold, arXiv: 1207.1729

[5] Li C. X., Nimmo J. J. C., “Darboux transformations for a twisted derivation and quasideterminant solutions to the super KdV equation”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 2471–2493, arXiv: 0911.1413 | DOI | MR | Zbl

[6] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR

[7] Novikov S. P., “Four lectures: discretization and integrability. Discrete spectral symmetries”, Integrability, Lecture Notes in Physics, 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 119–138 | DOI | MR | Zbl

[8] Novikov S. P., Veselov A. P., “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 109–132, arXiv: math-ph/0003008 | MR | Zbl

[9] Rogers C., Schief W. K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | MR

[10] Shemyakova E., “Laplace transformations as the only degenerate Darboux transformations of first order”, Program. Comput. Softw., 38 (2012), 105–108 | DOI | Zbl

[11] Shemyakova E., “Proof of the completeness of Darboux Wronskian formulas for order two”, Canad. J. Math. (to appear) , arXiv: 1111.1338

[12] Tsarev S. P., “Factorization of linear partial differential operators and the Darboux method for integrating nonlinear partial differential equations”, Theoret. Math. Phys., 122 (2000), 121–133 | DOI | MR | Zbl

[13] Tsarev S. P., Shemyakova E., “Differential transformations of second-order parabolic operators in the plane”, Proc. Steklov Inst. Math., 266, 2009, 219–227, arXiv: 0811.1492 | DOI | MR | Zbl