@article{SIGMA_2013_9_a1,
author = {Ekaterina Shemyakova},
title = {Invertible {Darboux} {Transformations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a1/}
}
Ekaterina Shemyakova. Invertible Darboux Transformations. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a1/
[1] Bagrov V. G., Samsonov B. F., “Darboux transformation of the Schrödinger equation”, Phys. Part. Nuclei, 28 (1997), 374–397 | DOI | MR
[2] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. II, Gauthier-Villars, Paris, 1889 | Zbl
[3] Ganzha E. I., “On Laplace and Dini transformations for multidimensional equations with a decomposable principal symbol”, Program. Comput. Softw., 38 (2012), 150–155 | DOI | Zbl
[4] Grinevich P. G., Novikov S. P., Discrete $SL_2$ connections and self-adjoint difference operators on the triangulated 2-manifold, arXiv: 1207.1729
[5] Li C. X., Nimmo J. J. C., “Darboux transformations for a twisted derivation and quasideterminant solutions to the super KdV equation”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 2471–2493, arXiv: 0911.1413 | DOI | MR | Zbl
[6] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR
[7] Novikov S. P., “Four lectures: discretization and integrability. Discrete spectral symmetries”, Integrability, Lecture Notes in Physics, 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 119–138 | DOI | MR | Zbl
[8] Novikov S. P., Veselov A. P., “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 109–132, arXiv: math-ph/0003008 | MR | Zbl
[9] Rogers C., Schief W. K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | MR
[10] Shemyakova E., “Laplace transformations as the only degenerate Darboux transformations of first order”, Program. Comput. Softw., 38 (2012), 105–108 | DOI | Zbl
[11] Shemyakova E., “Proof of the completeness of Darboux Wronskian formulas for order two”, Canad. J. Math. (to appear) , arXiv: 1111.1338
[12] Tsarev S. P., “Factorization of linear partial differential operators and the Darboux method for integrating nonlinear partial differential equations”, Theoret. Math. Phys., 122 (2000), 121–133 | DOI | MR | Zbl
[13] Tsarev S. P., Shemyakova E., “Differential transformations of second-order parabolic operators in the plane”, Proc. Steklov Inst. Math., 266, 2009, 219–227, arXiv: 0811.1492 | DOI | MR | Zbl