@article{SIGMA_2013_9_a0,
author = {Changzheng Qu and Junfeng Song and Ruoxia Yao},
title = {Multi-Component {Integrable} {Systems} {and~Invariant} {Curve} {Flows} in {Certain} {Geometries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2013},
volume = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a0/}
}
TY - JOUR AU - Changzheng Qu AU - Junfeng Song AU - Ruoxia Yao TI - Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries JO - Symmetry, integrability and geometry: methods and applications PY - 2013 VL - 9 UR - http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a0/ LA - en ID - SIGMA_2013_9_a0 ER -
%0 Journal Article %A Changzheng Qu %A Junfeng Song %A Ruoxia Yao %T Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries %J Symmetry, integrability and geometry: methods and applications %D 2013 %V 9 %U http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a0/ %G en %F SIGMA_2013_9_a0
Changzheng Qu; Junfeng Song; Ruoxia Yao. Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries. Symmetry, integrability and geometry: methods and applications, Tome 9 (2013). http://geodesic.mathdoc.fr/item/SIGMA_2013_9_a0/
[1] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149, Cambridge University Press, Cambridge, 1991 | MR | Zbl
[2] Anco S. C., “Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations”, J. Phys. A: Math. Gen., 39 (2006), 2043–2072, arXiv: nlin.SI/0512051 | DOI | MR | Zbl
[3] Anco S. C., “Group-invariant soliton equations and bi-Hamiltonian geometric curve flows in Riemannian symmetric spaces”, J. Geom. Phys., 58 (2008), 1–37, arXiv: nlin.SI/0703041 | DOI | MR | Zbl
[4] Anco S. C., “Hamiltonian flows of curves in $G/\mathrm{SO}(N)$ and vector soliton equations of mKdV and sine-Gordon type”, SIGMA, 2 (2006), 044, 17 pp., arXiv: nlin.SI/0512046 | MR | Zbl
[5] Anco S. C., Asadi E., “Quaternionic soliton equations from Hamiltonian curve flows in $\mathrm{HP}^n$”, J. Phys. A: Math. Theor., 42 (2009), 485201, 25, arXiv: 0905.4215 | DOI | MR | Zbl
[6] Asadi E., Sanders J. A., “Integrable systems in symplectic geometry”, Glasg. Math. J., 51 (2009), 5–23 | DOI | MR
[7] Calini A., Ivey T., Marí-Beffa G., “Remarks on KdV-type flows on star-shaped curves”, Phys. D, 238 (2009), 788–797, arXiv: 0808.3593 | DOI | MR | Zbl
[8] Camassa R., Holm D. D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR | Zbl
[9] Chou K. S., Qu C. Z., “Integrable equations arising from motions of plane curves”, Phys. D, 162 (2002), 9–33 | DOI | MR | Zbl
[10] Chou K. S., Qu C. Z., “Integrable equations arising from motions of plane curves, II”, J. Nonlinear Sci., 13 (2003), 487–517 | DOI | MR | Zbl
[11] Chou K. S., Qu C. Z., “Integrable motions of space curves in affine geometry”, Chaos Solitons Fractals, 14 (2002), 29–44 | DOI | MR | Zbl
[12] Chou K. S., Qu C. Z., “Motions of curves in similarity geometries and Burgers-mKdV hierarchies”, Chaos Solitons Fractals, 19 (2004), 47–53 | DOI | MR | Zbl
[13] Constantin A., Kolev B., “Geodesic flow on the diffeomorphism group of the circle”, Comment. Math. Helv., 78 (2003), 787–804, arXiv: math-ph/0305013 | DOI | MR | Zbl
[14] Constantin A., Kolev B., “Integrability of invariant metrics on the diffeomorphism group of the circle”, J. Nonlinear Sci., 16 (2006), 109–122, arXiv: 0911.5058 | DOI | MR | Zbl
[15] Doliwa A., Santini P. M., “An elementary geometric characterization of the integrable motions of a curve”, Phys. Lett. A, 185 (1994), 373–384 | DOI | MR | Zbl
[16] Fels M., Olver P. J., “Moving coframes. II: Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[17] Fokas A. S., “On a class of physically important integrable equations”, Phys. D, 87 (1995), 145–150 | DOI | MR | Zbl
[18] Fuchssteiner B., “Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation”, Phys. D, 95 (1996), 229–243 | DOI | MR | Zbl
[19] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI | MR | Zbl
[20] Geng X. G., Xue B., “A three-component generalization of Camassa–Holm equation with $N$-peakon solutions”, Adv. Math., 226 (2011), 827–839 | DOI | MR | Zbl
[21] Goldstein R. E., Petrich D. M., “The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane”, Phys. Rev. Lett., 67 (1991), 3203–3206 | DOI | MR | Zbl
[22] Guha P., Olver P. J., “Geodesic flow and two (super) component analog of the Camassa–Holm equation”, SIGMA, 2 (2006), 054, 9 pp., arXiv: nlin.SI/0605041 | MR | Zbl
[23] Gui G., Liu Y., Olver P. J., Qu C. Z., “Wave-breaking and peakons for a modified Camassa–Holm equation”, Comm. Math. Phys. (to appear)
[24] Hasimoto H., “A soliton on a vortex filament”, J. Fluid Mech., 51 (1972), 477–485 | DOI | Zbl
[25] Hone A. N. W., Wang J. P., “Integrable peakon equations with cubic nonlinearity”, J. Phys. A: Math. Theor., 41 (2008), 372002, 10 pp., arXiv: 0805.4310 | DOI | MR | Zbl
[26] Ivey T. A., “Integrable geometric evolution equations for curves”, The Geometrical Study of Differential Equations, Washington, DC, 2000, Contemp. Math., 285, Amer. Math. Soc., Providence, RI, 2001, 71–84 | DOI | MR | Zbl
[27] Kamran N., Olver P., Tenenblat K., “Local symplectic invariants for curves”, Commun. Contemp. Math., 11 (2009), 165–183 | DOI | MR | Zbl
[28] Kouranbaeva S., “The Camassa–Holm equation as a geodesic flow on the diffeomorphism group”, J. Math. Phys., 40 (1999), 857–868, arXiv: math-ph/9807021 | DOI | MR | Zbl
[29] Langer J., Perline R., “Poisson geometry of the filament equation”, J. Nonlinear Sci., 1 (1991), 71–93 | DOI | MR | Zbl
[30] Li Y. Y., Qu C. Z., Shu S. C., “Integrable motions of curves in projective geometries”, J. Geom. Phys., 60 (2010), 972–985 | DOI | MR | Zbl
[31] Marí Beffa G., “Bi-Hamiltonian flows and their realizations as curves in real semisimple homogeneous manifolds”, Pacific J. Math., 247 (2010), 163–188 | DOI | MR | Zbl
[32] Marí Beffa G., “Conformal analogue of the Adler–Gel'fand–Dikii bracket in two dimensions”, J. Phys. A: Math. Gen., 33 (2000), 4689–4707 | DOI | MR | Zbl
[33] Marí Beffa G., “Geometric realizations of bi-Hamiltonian completely integrable systems”, SIGMA, 4 (2008), 034, 23 pp., arXiv: 0803.3866 | MR
[34] Marí Beffa G., “Hamiltonian evolution of curves in classical affine geometries”, Phys. D, 238 (2009), 100–115 | DOI | MR | Zbl
[35] Marí Beffa G., “On completely integrable geometric evolutions of curves of Lagrangian planes”, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 111–131 | MR | Zbl
[36] Marí Beffa G., “Poisson brackets associated to the conformal geometry of curves”, Trans. Amer. Math. Soc., 357 (2005), 2799–2827 | DOI | MR | Zbl
[37] Marí Beffa G., “Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces”, Proc. Amer. Math. Soc., 134 (2006), 779–791 | DOI | MR | Zbl
[38] Marí Beffa G., Olver P. J., “Poisson structures for geometric curve flows in semi-simple homogeneous spaces”, Regul. Chaotic Dyn., 15 (2010), 532–550 | DOI | MR | Zbl
[39] Marí Beffa G., Sanders J. A., Wang J. P., “Integrable systems in three-dimensional Riemannian geometry”, J. Nonlinear Sci., 12 (2002), 143–167 | DOI | MR | Zbl
[40] Misiolek G., “A shallow water equation as a geodesic flow on the Bott–Virasoro group”, J. Geom. Phys., 24 (1998), 203–208 | DOI | MR | Zbl
[41] Musso E., “Motions of curves in the projective plane inducing the Kaup–Kupershmidt hierarchy”, SIGMA, 8 (2012), 030, 20 pp., arXiv: 1205.5329 | MR | Zbl
[42] Nakayama K., Segur H., Wadati M., “Integrability and the motion of curves”, Phys. Rev. Lett., 69 (1992), 2603–2606 | DOI | MR | Zbl
[43] Novikov V., “Generalizations of the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42 (2009), 342002, 14 pp. | DOI | MR | Zbl
[44] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, 2nd ed., Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[45] Olver P. J., “Invariant submanifold flows”, J. Phys. A: Math. Theor., 41 (2008), 344017, 22 pp. | DOI | MR | Zbl
[46] Olver P. J., Rosenau P., “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E, 53 (1996), 1900–1906 | DOI | MR
[47] Olver P. J., Sokolov V. V., “Integrable evolution equations on associative algebras”, Comm. Math. Phys., 193 (1998), 245–268 | DOI | MR | Zbl
[48] Pinkall U., “Hamiltonian flows on the space of star-shaped curves”, Results Math., 27 (1995), 328–332 | MR | Zbl
[49] Qiao Z., “A new integrable equation with cuspons and $\mathrm{W/M}$-shape-peaks solitons”, J. Math. Phys., 47 (2006), 112701, 9 pp. | DOI | MR | Zbl
[50] Sanders J. A., Wang J. P., “Integrable systems in $n$-dimensional conformal geometry”, J. Difference Equ. Appl., 12 (2006), 983–995 | DOI | MR | Zbl
[51] Sanders J. A., Wang J. P., “Integrable systems in $n$-dimensional Riemannian geometry”, Mosc. Math. J., 3 (2003), 1369–1393, arXiv: math.AP/0301212 | MR | Zbl
[52] Schäfer T., Wayne C. E., “Propagation of ultra-short optical pulses in cubic nonlinear media”, Phys. D, 196 (2004), 90–105 | DOI | MR
[53] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl
[54] Song J. F., Qu C. Z., “Integrable systems and invariant curve flows in centro-equiaffine symplectic geometry”, Phys. D, 241 (2012), 393–402 | DOI | MR | Zbl
[55] Song J. F., Qu C. Z., Qiao Z. J., “A new integrable two-component system with cubic nonlinearity”, J. Math. Phys., 52 (2011), 013503, 9 pp. | DOI | MR
[56] Tao T., Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conference Series in Mathematics, 106, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl
[57] Terng C. L., Thorbergsson G., “Completely integrable curve flows on adjoint orbits”, Results Math., 40 (2001), 286–309 | MR | Zbl
[58] Valiquette F., “Geometric affine symplectic curve flows in $\mathbb{R}^4$”, Differential Geom. Appl., 30 (2012), 631–641 | DOI | MR | Zbl
[59] Wang J. P., “Generalized Hasimoto transformation and vector sine-Gordon equation”, SPT 2002: Symmetry and Perturbation Theory (Cala Gonone), World Sci. Publ., River Edge, NJ, 2002, 276–283 | DOI | MR
[60] Wo W., Qu C. Z., “Integrable motions of curves in $S^1\times\mathbb{R}$”, J. Geom. Phys., 57 (2007), 1733–1755 | DOI | MR | Zbl