@article{SIGMA_2012_8_a96,
author = {Nicholas S. Witte and Christopher M. Ormerod},
title = {Construction of a {Lax} {Pair} for the $E_6^{(1)}$ $q${-Painlev\'e} {System}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a96/}
}
TY - JOUR
AU - Nicholas S. Witte
AU - Christopher M. Ormerod
TI - Construction of a Lax Pair for the $E_6^{(1)}$ $q$-Painlevé System
JO - Symmetry, integrability and geometry: methods and applications
PY - 2012
VL - 8
UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a96/
LA - en
ID - SIGMA_2012_8_a96
ER -
Nicholas S. Witte; Christopher M. Ormerod. Construction of a Lax Pair for the $E_6^{(1)}$ $q$-Painlevé System. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a96/
[1] Birkhoff G. D., “General theory of linear difference equations”, Trans. Amer. Math. Soc., 12 (1911), 243–284 | DOI | MR | Zbl
[2] Birkhoff G. D., “The generalized Riemann problem for linear differential equations and the Allied problems for linear difference and $q$-difference equations”, Trans. Amer. Math. Soc., 49 (1913), 521–568 http://www.jstor.org/stable/20025482 | Zbl
[3] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[4] Jimbo M., Sakai H., “A {$q$}-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38 (1996), 145–154, arXiv: chao-dyn/9507010 | DOI | MR | Zbl
[5] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Construction of hypergeometric solutions to the {$q$}-{P}ainlevé equations”, Int. Math. Res. Not., 2005:24 (2005), 1439–1463, arXiv: nlin.SI/0501051 | DOI | MR | Zbl
[6] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “Hypergeometric solutions to the {$q$}-{P}ainlevé equations”, Int. Math. Res. Not., 2004:47 (2004), 2497–2521, arXiv: nlin.SI/0403036 | DOI | MR | Zbl
[7] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their {$q$}-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[8] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98–17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998 http://aw.twi.tudelft.nl/k̃oekoek/askey/
[9] Magnus A. P., “Associated {A}skey–{W}ilson polynomials as {L}aguerre–{H}ahn orthogonal polynomials”, Orthogonal Polynomials and their Applications (Segovia, 1986), Lecture Notes in Math., 1329, Springer, Berlin, 1988, 261–278 | DOI | MR | Zbl
[10] Magnus A. P., “Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points”, J. Comput. Appl. Math., 65 (1995), 253–265, arXiv: math.CA/9502228 | DOI | MR | Zbl
[11] Murata M., “Lax forms of the {$q$}-{P}ainlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 115201, 17 pp., arXiv: 0810.0058 | DOI | MR | Zbl
[12] Papageorgiou V. G., Nijhoff F.W., Grammaticos B., Ramani A., “Isomonodromic deformation problems for discrete analogues of {P}ainlevé equations”, Phys. Lett. A, 164 (1992), 57–64 | DOI | MR
[13] Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K. M., “Special function solutions of the discrete {P}ainlevé equations”, Comput. Math. Appl., 42 (2001), 603–614 | DOI | MR | Zbl
[14] Sakai H., “A {$q$}-analog of the {G}arnier system”, Funkcial. Ekvac., 48 (2005), 273–297 | DOI | MR | Zbl
[15] Sakai H., “Lax form of the {$q$}-{P}ainlevé equation associated with the {$A\sp {(1)}\sb 2$} surface”, J. Phys. A: Math. Gen., 39 (2006), 12203–12210 | DOI | MR | Zbl
[16] Sakai H., “Rational surfaces associated with affine root systems and geometry of the {P}ainlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[17] Witte N. S., Semi-classical orthogonal polynomial systems on non-uniform lattices, deformations of the {A}skey table and analogs of isomonodromy, arXiv: 1204.2328
[18] Yamada Y., “Lax formalism for {$q$}-{P}ainlevé equations with affine {W}eyl group symmetry of type $E^{(1)}_n$”, Int. Math. Res. Not., 2011:17 (2011), 3823–3838, arXiv: 1004.1687 | DOI | MR | Zbl