Minkowski Polynomials and Mutations
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a Laurent polynomial $f$, one can form the period of $f$: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the period and are closely connected with cluster algebras. We propose a higher-dimensional analog of mutation acting on Laurent polynomials $f$ in $n$ variables. In particular we give a combinatorial description of mutation acting on the Newton polytope $P$ of $f$, and use this to establish many basic facts about mutations. Mutations can be understood combinatorially in terms of Minkowski rearrangements of slices of $P$, or in terms of piecewise-linear transformations acting on the dual polytope $P^*$ (much like cluster transformations). Mutations map Fano polytopes to Fano polytopes, preserve the Ehrhart series of the dual polytope, and preserve the period of $f$. Finally we use our results to show that Minkowski polynomials, which are a family of Laurent polynomials that give mirror partners to many three-dimensional Fano manifolds, are connected by a sequence of mutations if and only if they have the same period.
Keywords: mirror symmetry; Fano manifold; Laurent polynomial; mutation; cluster transformation; Minkowski decomposition; Minkowski polynomial; Newton polytope; Ehrhart series; quasi-period collapse.
@article{SIGMA_2012_8_a93,
     author = {Mohammad Akhtar and Tom Coates and Sergey Galkin and Alexander M. Kasprzyk},
     title = {Minkowski {Polynomials} and {Mutations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a93/}
}
TY  - JOUR
AU  - Mohammad Akhtar
AU  - Tom Coates
AU  - Sergey Galkin
AU  - Alexander M. Kasprzyk
TI  - Minkowski Polynomials and Mutations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a93/
LA  - en
ID  - SIGMA_2012_8_a93
ER  - 
%0 Journal Article
%A Mohammad Akhtar
%A Tom Coates
%A Sergey Galkin
%A Alexander M. Kasprzyk
%T Minkowski Polynomials and Mutations
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a93/
%G en
%F SIGMA_2012_8_a93
Mohammad Akhtar; Tom Coates; Sergey Galkin; Alexander M. Kasprzyk. Minkowski Polynomials and Mutations. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a93/

[1] Auroux D., “Mirror symmetry and {$T$}-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91, arXiv: 0706.3207 | MR | Zbl

[2] Batyrev V. V., “Dual polyhedra and mirror symmetry for {C}alabi–{Y}au hypersurfaces in toric varieties”, J. Algebraic Geom., 3 (1994), 493–535, arXiv: alg-geom/9310003 | MR | Zbl

[3] Batyrev V. V., “Toric degenerations of {F}ano varieties and constructing mirror manifolds”, The Fano Conference, Univ. Torino, Turin, 2004, 109–122, arXiv: alg-geom/9712034 | MR | Zbl

[4] Batyrev V. V., Ciocan-Fontanine I., Kim B., van Straten D., “Conifold transitions and mirror symmetry for Calabi–Yau complete intersections in Grassmannians”, Nuclear Phys. B, 514 (1998), 640–666, arXiv: alg-geom/9710022 | DOI | MR | Zbl

[5] Batyrev V. V., Ciocan-Fontanine I., Kim B., van Straten D., “Mirror symmetry and toric degenerations of partial flag manifolds”, Acta Math., 184 (2000), 1–39, arXiv: math.AG/9803108 | DOI | MR | Zbl

[6] Batyrev V. V., Kreuzer M., “Integral cohomology and mirror symmetry for Calabi–Yau 3-folds”, Mirror Symmetry, v. 5, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 255–270, arXiv: math.AG/0505432 | MR | Zbl

[7] Beck M., Sam S. V., Woods K. M., “Maximal periods of (Ehrhart) quasi-polynomials”, J. Combin. Theory Ser. A, 115 (2008), 517–525, arXiv: math.CO/0702242 | DOI | MR | Zbl

[8] Coates T., Corti A., Galkin S., Golyshev V., Kasprzyk A. M., Fano varieties and extremal Laurent polynomials, http://www.fanosearch.net/

[9] Coates T., Corti A., Galkin S., Golyshev V., Kasprzyk A. M., Mirror symmetry and Fano manifolds, Preprint, 2012

[10] Cruz Morales J. A., Galkin S., Upper bounds for mutations of potentials, Preprint IPMU 12–0110, 2012

[11] Eguchi T., Hori K., Xiong C. S., “Gravitational quantum cohomology”, Internat. J. Modern Phys. A, 12 (1997), 1743–1782, arXiv: hep-th/9605225 | DOI | MR | Zbl

[12] Fiset M. H. J., Kasprzyk A. M., “A note on palindromic {$\delta$}-vectors for certain rational polytopes”, Electron. J. Combin., 15 (2008), 18, 4 pp., arXiv: 0806.3942 | MR

[13] Fomin S., Zelevinsky A., “Cluster algebras. I: Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl

[14] Galkin S., Usnich A., Mutations of potentials, Preprint IPMU 10–0100, 2010

[15] Gel'fand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Mathematics: Theory Applications, Birkhäuser Boston Inc., Boston, MA, 1994 | MR

[16] Haase C., McAllister T. B., “Quasi-period collapse and {${\rm GL}_n({\mathbb Z})$}-scissors congruence in rational polytopes”, Integer Points in Polyhedra – Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics, Contemp. Math., 452, Amer. Math. Soc., Providence, RI, 2008, 115–122, arXiv: 0709.4070 | DOI | MR | Zbl

[17] Hori K., Vafa C., Mirror symmetry, arXiv: hep-th/0002222

[18] Ilten N. O., “Mutations of Laurent polynomials and flat families with toric fibers”, SIGMA, 8 (2012), 047, 7 pp., arXiv: 1205.4664 | DOI | MR

[19] Kasprzyk A. M., “Canonical toric Fano threefolds”, Canad. J. Math., 62 (2010), 1293–1309, arXiv: 0806.2604 | DOI | MR | Zbl

[20] Kreuzer M., Skarke H., “Classification of reflexive polyhedra in three dimensions”, Adv. Theor. Math. Phys., 2 (1998), 853–871, arXiv: hep-th/9805190 | MR | Zbl

[21] Kreuzer M., Skarke H., “Complete classification of reflexive polyhedra in four dimensions”, Adv. Theor. Math. Phys., 4 (2000), 1209–1230, arXiv: hep-th/0002240 | MR | Zbl

[22] Lam T., Pylyavskyy P., Laurent phenomenon algebras, arXiv: 1206.2611

[23] Prokhorov Y. G., “The degree of {F}ano threefolds with canonical {G}orenstein singularities”, Sb. Math., 196 (2005), 77–114, arXiv: math.AG/0405347 | DOI | MR | Zbl

[24] Przyjalkowski V., “On Landau–Ginzburg models for Fano varieties”, Commun. Number Theory Phys., 1 (2007), 713–728, arXiv: 0707.3758 | MR

[25] Stanley R. P., “Decompositions of rational convex polytopes”, Ann. Discrete Math., 6 (1980), 333–342 | DOI | MR | Zbl