Orthogonal Basic Hypergeometric Laurent Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Askey–Wilson polynomials are orthogonal polynomials in $x = \cos \theta$, which are given as a terminating $_4\phi_3$ basic hypergeometric series. The non-symmetric Askey–Wilson polynomials are Laurent polynomials in $z=e^{i\theta}$, which are given as a sum of two terminating $_4\phi_3$'s. They satisfy a biorthogonality relation. In this paper new orthogonality relations for single $_4\phi_3$'s which are Laurent polynomials in $z$ are given, which imply the non-symmetric Askey–Wilson biorthogonality. These results include discrete orthogonality relations. They can be considered as a classical analytic study of the results for non-symmetric Askey–Wilson polynomials which were previously obtained by affine Hecke algebra techniques.
Keywords: Askey–Wilson polynomials; orthogonality.
@article{SIGMA_2012_8_a91,
     author = {Mourad E. H. Ismail and Dennis Stanton},
     title = {Orthogonal {Basic} {Hypergeometric} {Laurent} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a91/}
}
TY  - JOUR
AU  - Mourad E. H. Ismail
AU  - Dennis Stanton
TI  - Orthogonal Basic Hypergeometric Laurent Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a91/
LA  - en
ID  - SIGMA_2012_8_a91
ER  - 
%0 Journal Article
%A Mourad E. H. Ismail
%A Dennis Stanton
%T Orthogonal Basic Hypergeometric Laurent Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a91/
%G en
%F SIGMA_2012_8_a91
Mourad E. H. Ismail; Dennis Stanton. Orthogonal Basic Hypergeometric Laurent Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a91/

[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[2] Askey R., Wilson J., “A set of orthogonal polynomials that generalize the Racah coefficients or $6-j$ symbols”, SIAM J. Math. Anal., 10 (1979), 1008–1016 | DOI | MR | Zbl

[3] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985, 55 pp. | MR

[4] Brezinski C., Biorthogonality and its applications to numerical analysis, Monographs and Textbooks in Pure and Applied Mathematics, 156, Marcel Dekker Inc., New York, 1992 | MR | Zbl

[5] Bultheel A., Gonzalez-Vera P., Hendriksen E., Njastad O., “Orthogonal rational functions and continued fractions”, Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001, 87–109 | MR | Zbl

[6] Cherednik I., “Nonsymmetric Macdonald polynomials”, Int. Math. Res. Not., 1995:10 (1995), 483–515, arXiv: q-alg/9505029 | DOI | MR | Zbl

[7] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | MR | Zbl

[8] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[9] Ismail M. E. H., Masson D. R., “Generalized orthogonality and continued fractions”, J. Approx. Theory, 83 (1995), 1–40, arXiv: math.CA/9407213 | DOI | MR | Zbl

[10] Ismail M. E. H., Wilson J. A., “Asymptotic and generating relations for the $q$-Jacobi and ${}_4\varphi_3$ polynomials”, J. Approx. Theory, 36 (1982), 43–54 | DOI | MR | Zbl

[11] Jones W. B., Thron W. J., Continued fractions, Encyclopedia of Mathematics and its Applications, 11, Addison-Wesley Publishing Co., Reading, Mass., 1980 | MR

[12] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998 http://aw.twi.tudelft.nl/k̃oekoek/askey/

[13] Koornwinder T. H., Bouzeffour F., “Non-symmetric Askey–Wilson polynomials as vector-valued polynomials”, Appl. Anal., 90 (2011), 731–746, arXiv: 1006.1140 [math.CA] | DOI | Zbl

[14] Lorentzen L., Waadeland H., Continued fractions with applications, v. 3, Studies in Computational Mathematics, North-Holland Publishing Co., Amsterdam, 1992 | MR | Zbl

[15] Lorentzen L., Waadeland H., Continued fractions, v. 1, Atlantis Studies in Mathematics for Engineering and Science, Convergence theory, 2nd ed., Atlantis Press, Paris, 2008 | DOI | MR | Zbl

[16] Macdonald I. G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[17] Noumi M., Stokman J. V., “Askey–Wilson polynomials: an affine Hecke algebra approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY, 2004, 111–144, arXiv: math.QA/0001033 | MR | Zbl

[18] Spiridonov V., Zhedanov A., “Spectral transformation chains and some new biorthogonal rational functions”, Comm. Math. Phys., 210 (2000), 49–83 | DOI | MR | Zbl

[19] Wilkinson J. H., The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965 | MR | Zbl

[20] Wilson J. A., Private communication, 1980 | MR

[21] Zhedanov A., “Biorthogonal rational functions and the generalized eigenvalue problem”, J. Approx. Theory, 101 (1999), 303–329 | DOI | MR | Zbl