Covariant Fields of $C^*$-Algebras under Rieffel Deformation
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that Rieffel's deformation sends covariant $\mathcal{C}(T)$-algebras into $\mathcal{C}(T)$-algebras. We also treat the lower semi-continuity issue, proving that Rieffel's deformation transforms covariant continuous fields of $C^*$-algebras into continuous fields of $C^*$-algebras. Some examples are indicated, including certain quantum groups.
Keywords: pseudodifferential operator; Rieffel deformation; $C^*$-algebra; continuous field; noncommutative dynamical system.
@article{SIGMA_2012_8_a90,
     author = {Fabian Belmonte and Marius M\u{a}ntoiu},
     title = {Covariant {Fields} of $C^*${-Algebras} under {Rieffel} {Deformation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a90/}
}
TY  - JOUR
AU  - Fabian Belmonte
AU  - Marius Măntoiu
TI  - Covariant Fields of $C^*$-Algebras under Rieffel Deformation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a90/
LA  - en
ID  - SIGMA_2012_8_a90
ER  - 
%0 Journal Article
%A Fabian Belmonte
%A Marius Măntoiu
%T Covariant Fields of $C^*$-Algebras under Rieffel Deformation
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a90/
%G en
%F SIGMA_2012_8_a90
Fabian Belmonte; Marius Măntoiu. Covariant Fields of $C^*$-Algebras under Rieffel Deformation. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a90/

[1] Belmonte F., Măntoiu M., “Continuity of spectra in Rieffel's pseudodifferential calculus”, Spectral Analysis of Quantum Hamiltonians, Oper. Theory Adv. Appl., 224, Birkhäuser, Basel, 2012, 11–24 | MR

[2] Beltiţă I., Măntoiu M., “Rieffel deformation and twisted crossed products”, Int. Math. Res. Not. (to appear) , arXiv: 1208.6548[math.OA]

[3] Blanchard E., “A few remarks on exact $C(X)$-algebras”, Rev. Roumaine Math. Pures Appl., 45 (2000), 565–576, arXiv: 0012127[math.OA] | MR | Zbl

[4] Blanchard É., “Déformations de $C^*$-algèbres de Hopf”, Bull. Soc. Math. France, 124 (1996), 141–215 | MR | Zbl

[5] Dixmier J., Malliavin P., “Factorisations de fonctions et de vecteurs indéfiniment différentiables”, Bull. Sci. Math. (2), 102 (1978), 307–330 | MR

[6] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl

[7] Fell J. M. G., “The structure of algebras of operator fields”, Acta Math., 106 (1961), 233–280 | DOI | MR | Zbl

[8] Folland G. B., Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[9] Hannabuss K. C., Mathai V., “Noncommutative principal torus bundles via parametrised strict deformation quantization”, Superstrings, Geometry, Topology, and $C^*$-Algebras, Proc. Sympos. Pure Math., 81, Amer. Math. Soc., Providence, RI, 2010, 133–147, arXiv: 0911.1886[math-ph] | DOI | MR | Zbl

[10] Hannabuss K. C., Mathai V., “Parametrized strict deformation quantization of $C^*$-bundles and Hilbert $C^*$-modules”, J. Aust. Math. Soc., 90 (2011), 25–38, arXiv: 1007.4696[math.QA] | DOI | MR | Zbl

[11] Kasprzak P., “Rieffel deformation via crossed products”, J. Funct. Anal., 257 (2009), 1288–1332, arXiv: 0606333[math.OA] | DOI | MR | Zbl

[12] Landsman N. P., Mathematical topics between classical and quantum mechanics, Springer Monographs in Mathematics, Springer-Verlag, New York, 1998 | DOI | MR

[13] Lee R. Y., “On the $C^*$-algebras of operator fields”, Indiana Univ. Math. J., 25 (1976), 303–314 | DOI | MR

[14] Măntoiu M., “Rieffel's pseudodifferential calculus and spectral analysis for quantum Hamiltonians”, Ann. Inst. Fourier (Grenoble), 62 (2012), 1551–1580, arXiv: 1003.3149[math.FA] | DOI

[15] Nilsen M., “$C^*$-bundles and $C_0(X)$-algebras”, Indiana Univ. Math. J., 45 (1996), 463–477 | DOI | MR | Zbl

[16] Packer J. A., Raeburn I., “Twisted crossed products of $C^*$-algebras, II”, Math. Ann., 287 (1990), 595–612 | DOI | MR | Zbl

[17] Piacitelli G., “Quantum spacetime: a disambiguation”, SIGMA, 6 (2010), 073, 43 pp., arXiv: 1004.5261[math-ph] | MR | Zbl

[18] Raeburn I., Williams D. P., Morita equivalence and continuous-trace $C^*$-algebras, Mathematical Surveys and Monographs, 60, American Mathematical Society, Providence, RI, 1998 | MR | Zbl

[19] Rieffel M. A., “Compact quantum groups associated with toral subgroups”, Representation Theory of Groups and Algebras, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993, 465–491 | DOI | MR | Zbl

[20] Rieffel M. A., “Continuous fields of $C^*$-algebras coming from group cocycles and actions”, Math. Ann., 283 (1989), 631–643 | DOI | MR | Zbl

[21] Rieffel M. A., Deformation quantization for actions of $\mathbf{R}^d$, Mem. Amer. Math. Soc., 106, no. 506, 1993, 93 pp. | MR

[22] Rieffel M. A., “Quantization and $C^*$-algebras”, $C^*$-Algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., 167, Amer. Math. Soc., Providence, RI, 1994, 66–97 | DOI | MR

[23] Tomiyama J., “Topological representation of $C^*$-algebras”, Tôhoku Math. J., 14 (1962), 187–204 | DOI | MR | Zbl

[24] Williams D. P., Crossed products of $C^*$-algebras, Mathematical Surveys and Monographs, 134, American Mathematical Society, Providence, RI, 2007 | MR | Zbl