Mots-clés : loop quantization
@article{SIGMA_2012_8_a9,
author = {Ghanashyam Date and Golam Mortuza Hossain},
title = {Matter in loop quantum gravity},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a9/}
}
Ghanashyam Date; Golam Mortuza Hossain. Matter in loop quantum gravity. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a9/
[1] Alfaro J., Morales-Técotl H.A., Urrutia L.F., “Loop quantum gravity and light propagation”, Phys. Rev. D, 65 (2002), 103509, 18 pp. ; arXiv: hep-th/0108061 | DOI | MR
[2] Alfaro J., Morales-Técotl H.A., Urrutia L.F., “Quantum gravity corrections to neutrino propagation”, Phys. Rev. Lett., 84 (2000), 2318–2321 ; arXiv: gr-qc/9909079 | DOI
[3] Alfaro J., Morales-Técotl H.A., Urrutia L.F., “Quantum gravity and spin-1/2 particle effective dynamics”, Phys. Rev. D, 66 (2002), 124006, 19 pp. ; arXiv: hep-th/0208192 | DOI | MR | Zbl
[4] Ashtekar A., Fairhurst S., Willis J.L., “Quantum gravity, shadow states and quantum mechanics”, Classical Quantum Gravity, 20 (2003), 1031–1061 ; arXiv: gr-qc/0207106 | DOI | MR | Zbl
[5] Ashtekar A., Kaminski W., Lewandowski J., “Quantum field theory on a cosmological, quantum space-time”, Phys. Rev. D, 79 (2009), 064030, 12 pp. ; arXiv: 0901.0933 | DOI | MR
[6] Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152 ; arXiv: gr-qc/0404018 | DOI | MR | Zbl
[7] Ashtekar A., Lewandowski J., Sahlmann H., “Polymer and Fock representations for a scalar field”, Classical Quantum Gravity, 20 (2003), L11–L21 ; arXiv: gr-qc/0211012 | DOI | MR | Zbl
[8] Ashtekar A., Pawlowski T., Singh P., “Quantum nature of the big bang: an analytical and numerical investigation”, Phys. Rev. D, 73 (2006), 124038, 33 pp. ; arXiv: gr-qc/0604013 | DOI | MR
[9] Ashtekar A., Pawlowski T., Singh P., “Quantum nature of the big bang: improved dynamics”, Phys. Rev. D, 74 (2006), 084003, 23 pp. ; arXiv: gr-qc/0607039 | DOI | MR | Zbl
[10] Ashtekar A., Rovelli C., Smolin L., “Weaving a classical metric with quantum threads”, Phys. Rev. Lett., 69 (1992), 237–240 ; arXiv: hep-th/9203079 | DOI | MR | Zbl
[11] Ashtekar A., Wilson-Ewing E., “Loop quantum cosmology of Bianchi type I models”, Phys. Rev. D, 79 (2009), 083535, 21 pp. ; arXiv: 0903.3397 | DOI | MR
[12] Baez J.C., Krasnov K.V., “Quantization of diffeomorphism-invariant theories with fermions”, J. Math. Phys., 39 (1998), 1251–1271 ; arXiv: hep-th/9703112 | DOI | MR | Zbl
[13] Berezin F.A., The method of second quantization, Pure and Applied Physics, 24, Academic Press, New York, 1966 | MR | Zbl
[14] Bojowald M., Das R., “Canonical gravity with fermions”, Phys. Rev. D, 78 (2008), 064009, 16 pp. ; arXiv: 0710.5722 | DOI | MR
[15] Bojowald M., Das R., “Fermions in loop quantum cosmology and the role of parity”, Classical Quantum Gravity, 25 (2008), 195006, 23 pp. ; arXiv: 0806.2821 | DOI | MR | Zbl
[16] Bojowald M., Morales-Técotl H.A., Sahlmann H., “Loop quantum gravity phenomenology and the issue of Lorentz invariance”, Phys. Rev. D, 71 (2005), 084012, 7 pp. ; arXiv: gr-qc/0411101 | DOI | MR
[17] Borissov R., “Weave states for plane gravitational waves”, Phys. Rev. D, 49 (1994), 923–929 | DOI | MR
[18] Collins J., Perez A., Sudarsky D., Urrutia L., Vucetich H., “Lorentz invariance and quantum gravity: an additional fine-tuning problem?”, Phys. Rev. Lett., 93 (2004), 191301, 4 pp. ; arXiv: gr-qc/0403053 | DOI | MR
[19] Date G., Lectures on LQG/LQC, arXiv: 1004.2952
[20] Date G., Revisiting canonical gravity with fermion, arXiv: 1110.3416
[21] Date G., Kaul R.K., Sengupta S., “Topological interpretation of Barbero–Immirzi parameter”, Phys. Rev. D, 79 (2009), 044008, 7 pp. ; arXiv: 0811.4496 | DOI | MR
[22] DeWitt B., Supermanifolds, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984 | MR | Zbl
[23] Fell J.M.G., Doran R.S., Representations of $*$-algebras, locally compact groups, and Banach $*$-algebraic bundles, Academic Press, Boston, 1988
[24] Fleischhack C., “Representations of the Weyl algebra in quantum geometry”, Comm. Math. Phys., 285 (2009), 67–140 ; arXiv: math-ph/0407006 | DOI | MR
[25] Freidel L., Minic D., Takeuchi T., “Quantum gravity, torsion, parity violation, and all that”, Phys. Rev. D, 72 (2005), 104002, 6 pp. ; arXiv: hep-th/0507253 | DOI | MR
[26] Gambini R., Pullin J., “Nonstandard optics from quantum space-time”, Phys. Rev. D, 59 (1999), 124021, 4 pp. ; arXiv: gr-qc/9809038 | DOI | MR
[27] Gambini R., Pullin J., Rastgoo S., “Quantum scalar field in quantum gravity: the propagator and Lorentz invariance in the spherically symmetric case”, Gen. Relativity Gravitation, 43 (2011), 3569–3592 ; arXiv: 1105.0667 | DOI | Zbl
[28] Grot N., Rovelli C., “Weave states in loop quantum gravity”, Gen. Relativity Gravitation, 29 (1997), 1039–1048 | DOI | MR | Zbl
[29] Hehl F.W., von der Heyde P., Kerlick G.D., Nester J.M., “General relativity with spin and torsion: foundations and prospect”, Rev. Modern Phys., 48 (1976), 393–416 | DOI | MR
[30] Henneaux M., Teitelboim C., Quantization of gauge systems, Princeton University Press, Princeton, NJ, 1992 | MR | Zbl
[31] Hollands S., Wald R.M., “Axiomatic quantum field theory in curved spacetime”, Comm. Math. Phys., 293 (2010), 85–125 ; arXiv: 0803.2003 | DOI | MR | Zbl
[32] Hossain G.M., Husain V., Seahra S.S., “Background independent quantization and wave propagation”, Phys. Rev. D, 80 (2009), 044018, 12 pp. ; arXiv: 0906.4046 | DOI | MR
[33] Hossain G.M., Husain V., Seahra S.S., “Nonsingular inflationary universe from polymer matter”, Phys. Rev. D, 81 (2010), 024005, 5 pp. ; arXiv: 0906.2798 | DOI
[34] Hossain G.M., Husain V., Seahra S.S., “Propagator in polymer quantum field theory”, Phys. Rev. D, 82 (2010), 124032, 5 pp. ; arXiv: 1007.5500 | DOI
[35] Husain V., Kreienbuehl A., “Ultraviolet behavior in background independent quantum field theory”, Phys. Rev. D, 81 (2010), 084043, 7 pp. ; arXiv: 1002.0138 | DOI
[36] Iwasaki J., Basis states for gravitons in non-perturbative loop representation space, arXiv: gr-qc/9807013
[37] Iwasaki J., Rovelli C., “Gravitons as embroidery on the weave”, Internat. J. Modern Phys. D, 1 (1992), 533–557 | DOI | MR | Zbl
[38] Iwasaki J., Rovelli C., “Gravitons from loops: non-perturbative loop-space quantum gravity contains the graviton-physics approximation”, Classical Quantum Gravity, 11 (1994), 1653–1676 | DOI | MR
[39] Jacobson T., “Fermions in canonical gravity”, Classical Quantum Gravity, 5 (1988), L143–L148 http://stacks.iop.org/0264-9381/5/L143 | DOI | MR
[40] Jain P., Ralston J.P., “Supersymmetry and the {L}orentz fine tuning problem”, Phys. Lett. B, 621 (2005), 213–218 ; arXiv: hep-ph/0502106 | DOI | MR
[41] Kaul R.K., “Holst actions for supergravity theories”, Phys. Rev. D, 77 (2008), 045030, 8 pp. ; arXiv: 0711.4674 | DOI | MR
[42] Kaul R.K., Sengupta S., “Topological parameters in gravity”, Phys. Rev. D, 85 (2012), 024026, 15 pp. ; arXiv: 1106.3027 | DOI | MR
[43] Laddha A., Varadarajan M., “Polymer parametrized field theory”, Phys. Rev. D, 78 (2008), 044008, 22 pp. ; arXiv: 0805.0208 | DOI
[44] Laddha A., Varadarajan M., “Polymer quantization of the free scalar field and its classical limit”, Classical Quantum Gravity, 27 (2010), 175010, 45 pp. ; arXiv: 1001.3505 | DOI | MR | Zbl
[45] Lewandowski J., Okolów A., Sahlmann H., Thiemann T., “Uniqueness of diffeomorphism invariant states on holonomy-flux algebras”, Comm. Math. Phys., 267 (2006), 703–733 ; arXiv: gr-qc/0504147 | DOI | MR | Zbl
[46] Mattingly D., “Modern tests of Lorentz invariance”, Living Rev. Relativity, 8 (2005), 5, 84 pp. ; arXiv: gr-qc/0502097 | Zbl
[47] Mercuri S., “Fermions in the Ashtekar–{B}arbero connection formalism for arbitrary values of the Immirzi parameter”, Phys. Rev. D, 73 (2006), 084016, 14 pp. ; arXiv: gr-qc/0601013 | DOI | MR
[48] Mercuri S., Nieh–Yan invariant and Fermions in Ashtekar–Barbero–Immirzi formalism, arXiv: gr-qc/0610026
[49] Morales-Técotl H.A., Esposito G., “Self-dual action for fermionic fields and gravitation”, Nuovo Cimento B, 109 (1994), 973–982 ; arXiv: gr-qc/9506073 | DOI | MR
[50] Morales-Técotl H.A., Rovelli C., “Fermions in quantum gravity”, Phys. Rev. Lett., 72 (1994), 3642–3645 ; arXiv: gr-qc/9401011 | DOI | MR | Zbl
[51] Morales-Técotl H.A., Rovelli C., “Loop space representation of quantum fermions and gravity”, Nuclear Phys. B, 451 (1995), 325–361 | DOI | MR | Zbl
[52] Nicolai H., Peeters K., Zamaklar M., “Loop quantum gravity: an outside view”, Classical Quantum Gravity, 22 (2005), R193–R247 ; arXiv: hep-th/0501114 | DOI | MR | Zbl
[53] Perez A., Rovelli C., “Physical effects of the Immirzi parameter in loop quantum gravity”, Phys. Rev. D, 73 (2006), 044013, 3 pp. ; arXiv: gr-qc/0505081 | DOI | MR
[54] Rezende D.J., Perez A., “Four-dimensional Lorentzian Holst action with topological terms”, Phys. Rev. D, 79 (2009), 064026, 11 pp. ; arXiv: 0902.3416 | DOI | MR
[55] Sahlmann H., Thiemann T., “Towards the {QFT} on curved spacetime limit of QGR. I. A general scheme”, Classical Quantum Gravity, 23 (2006), 867–908 ; arXiv: gr-qc/0207030 | DOI | MR | Zbl
[56] Sahlmann H., Thiemann T., “Towards the QFT on curved spacetime limit of QGR. II. A concrete implementation”, Classical Quantum Gravity, 23 (2006), 909–954 ; arXiv: gr-qc/0207031 | DOI | MR | Zbl
[57] Sengupta S., Kaul R.K., “Canonical supergravity with Barbero–Immirzi parameter”, Phys. Rev. D, 81 (2010), 024024, 7 pp. ; arXiv: 0909.4850 | DOI | MR
[58] Thiemann T., “Kinematical Hilbert spaces for fermionic and Higgs quantum field theories”, Classical Quantum Gravity, 15 (1998), 1487–1512 ; arXiv: gr-qc/9705021 | DOI | MR | Zbl
[59] Thiemann T., “Quantum spin dynamics (QSD)”, Classical Quantum Gravity, 15 (1998), 839–873 ; arXiv: gr-qc/9606089 | DOI | MR | Zbl
[60] Thiemann T., “Quantum spin dynamics (QSD). II. The kernel of the Wheeler–DeWitt constraint operator”, Classical Quantum Gravity, 15 (1998), 875–905 ; arXiv: gr-qc/9606090 | DOI | MR | Zbl
[61] Thiemann T., “Quantum spin dynamics (QSD). V. Quantum gravity as the natural regulator of the Hamiltonian constraint of matter quantum field theories”, Classical Quantum Gravity, 15 (1998), 1281–1314 ; arXiv: gr-qc/9705019 | DOI | MR | Zbl
[62] Varadarajan M., “Photons from quantized electric flux representations”, Phys. Rev. D, 64 (2001), 104003, 9 pp. ; arXiv: gr-qc/0104051 | DOI | MR
[63] Wald R.M., Quantum field theory on curved space-times and black hole thermodynamics, The University of Chicago Press, Chicago, 1994 | MR
[64] Weyl H., “A remark on the coupling of gravitation and electron”, Phys. Rev., 77 (1950), 699–701 | DOI | MR
[65] Zegwaard J., “The weaving of curved geometries”, Phys. Lett. B, 300 (1993), 217–222 ; arXiv: hep-th/9210033 | DOI | MR