The Klein–Gordon Equation and Differential Substitutions of the Form $v=\varphi(u,u_x,u_y)$
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the complete classification of equations of the form $u_{xy} = f(u, u_x, u_y)$ and the Klein–Gordon equations $v_{xy} = F(v)$ connected with one another by differential substitutions $v = \varphi(u, u_x, u_y)$ such that $\varphi_{u_x}\varphi_{u_y}\neq 0$ over the ring of complex-valued variables.
Keywords: Klein–Gordon equation; differential substitution.
@article{SIGMA_2012_8_a89,
     author = {Mariya N. Kuznetsova and Asli Pekcan and Anatoliy V. Zhiber},
     title = {The {Klein{\textendash}Gordon} {Equation} and {Differential} {Substitutions} of the {Form} $v=\varphi(u,u_x,u_y)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a89/}
}
TY  - JOUR
AU  - Mariya N. Kuznetsova
AU  - Asli Pekcan
AU  - Anatoliy V. Zhiber
TI  - The Klein–Gordon Equation and Differential Substitutions of the Form $v=\varphi(u,u_x,u_y)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a89/
LA  - en
ID  - SIGMA_2012_8_a89
ER  - 
%0 Journal Article
%A Mariya N. Kuznetsova
%A Asli Pekcan
%A Anatoliy V. Zhiber
%T The Klein–Gordon Equation and Differential Substitutions of the Form $v=\varphi(u,u_x,u_y)$
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a89/
%G en
%F SIGMA_2012_8_a89
Mariya N. Kuznetsova; Asli Pekcan; Anatoliy V. Zhiber. The Klein–Gordon Equation and Differential Substitutions of the Form $v=\varphi(u,u_x,u_y)$. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a89/

[1] Anderson I. M., Kamran N., “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87 (1997), 265–319 | DOI | MR | Zbl

[2] Bäcklund A. V., “Einiges über Curven und Flächen Transformationen”, Lund Universitëts Arsskrift, 10 (1874), 1–12

[3] Bianchi L., “Ricerche sulle superficie elicoidali e sulle superficie a curvatura costante”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1879), 285–341 | MR

[4] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. II, Gauthier-Villars, Paris, 1889 | Zbl

[5] Drinfel'd V. G., Svinolupov S. I., Sokolov V. V., “Classification of fifth-order evolution equations having an infinite series of conservation laws”, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 1985, no. 10, 8–10 | MR

[6] Goursat E., Leçon sur l'intégration des équations aux dérivées partielles du second ordre á deux variables indépendantes, v. I, II, Hermann, Paris, 1896 | Zbl

[7] Khabirov S. V., “Infinite-parameter families of solutions of nonlinear differential equations”, Sb. Math., 77 (1994), 303–311 | DOI | MR

[8] Kuznetsova M. N., “Laplace transformation and nonlinear hyperbolic equations”, Ufa Math. J., 1:3 (2009), 87–96 | MR | Zbl

[9] Kuznetsova M. N., “On nonlinear hyperbolic equations related with the Klein–Gordon equation by differential substitutions”, Ufa Math. J., 4:3 (2012), 86–103 | MR

[10] Liouville J., “Sur l'equation aux différences partielles $\partial^2\log\lambda/\partial u\partial v\pm\lambda/(aa^2)=0$”, J. Math. Pures Appl., 18 (1853), 71–72

[11] Meshkov A. G., Sokolov V. V., “Hyperbolic equations with third-order symmetries”, Theoret. Math. Phys., 166 (2011), 43–57 | DOI

[12] Sokolov V. V., “On the symmetries of evolution equations”, Russian Math. Surveys, 43:5 (1988), 165–204 | DOI | MR | Zbl

[13] Soliman A. A., Abdo H. A., “New exact solutions of nonlinear variants of the RLN, the PHI-four and Boussinesq equations based on modified extended direct algebraic method”, Int. J. Nonlinear Sci., 7 (2009), 274–282, arXiv: 1207.5127[math.NA] | MR | Zbl

[14] Startsev S. Ya., “Hyperbolic equations admitting differential substitutions”, Theoret. Math. Phys., 127 (2001), 460–470 | DOI | MR | Zbl

[15] Startsev S. Ya., “Laplace invariants of hyperbolic equations linearizable by a differential substitution”, Theoret. Math. Phys., 120 (1999), 1009–1018 | DOI | MR | Zbl

[16] Svinolupov S. I., “Second-order evolution equations with symmetries”, Russian Math. Surveys, 40:5 (1985), 241–242 | DOI | MR | Zbl

[17] Tzitzéica G., “Sur une nouvelle classe de surfaces”, C. R. Acad. Sci., 144 (1907), 1257–1259 | Zbl

[18] Zhiber A. V., Shabat A. B., “Klein–Gordon equations with a nontrivial group”, Soviet Phys. Dokl., 24 (1979), 607–609

[19] Zhiber A. V., Sokolov V. V., “Exactly integrable hyperbolic equations of Liouville type”, Russian Math. Surveys, 56:1 (2001), 61–101 | DOI | MR | Zbl

[20] Zhiber A. V., Sokolov V. V., Startsev S. Ya., “Darboux integrable nonlinear hyperbolic equations”, Dokl. Math., 52 (1995), 128–130 | Zbl