@article{SIGMA_2012_8_a87,
author = {Bal\'azs Szendr\H{o}i},
title = {Nekrasov's {Partition} {Function} and {Refined} {Donaldson{\textendash}Thomas} {Theory:} {the~Rank} {One} {Case}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a87/}
}
Balázs Szendrői. Nekrasov's Partition Function and Refined Donaldson–Thomas Theory: the Rank One Case. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a87/
[1] Behrend K., “Donaldson-Thomas type invariants via microlocal geometry”, Ann. of Math. (2), 170 (2009), 1307–1338, arXiv: math.AG/0507523 | DOI | MR | Zbl
[2] Behrend K., Bryan J., Szendrői B., “Motivic degree zero Donaldson–Thomas invariants”, Invent. Math. (to appear) , arXiv: 0909.5088[math.AG]
[3] Bridgeland T., “Hall algebras and curve-counting invariants”, J. Amer. Math. Soc., 24 (2011), 969–998, arXiv: 1002.4374[math.AG] | DOI | MR | Zbl
[4] Choi J., Katz S., Klemm A., The refined BPS index from stable pair invariants, arXiv: 1210.4403[hep-th]
[5] Davison B., Maulik D., Schuermann J., Szendrői B., Purity for graded potentials and cluster positivity, unpublished
[6] Dimca A., Szendrői B., “The Milnor fibre of the Pfaffian and the Hilbert scheme of four points on $\mathbb{C}^3$”, Math. Res. Lett., 16 (2009), 1037–1055, arXiv: 0904.2419[math.AG] | MR | Zbl
[7] Dimofte T., Gukov S., “Refined, motivic, and quantum”, Lett. Math. Phys., 91 (2010), 1–27, arXiv: 0904.1420[hep-th] | DOI | MR | Zbl
[8] Efimov A. I., Quantum cluster variables via vanishing cycles, arXiv: 1112.3601[math.AG]
[9] Gopakumar R., Vafa C., M-theory and topological strings, I, arXiv: hep-th/9809187
[10] Gukov S., Stosic M., Homological algebra of knots and BPS states, arXiv: 1112.0030[hep-th]
[11] Hollowood T., Iqbal A., Vafa C., “Matrix models, geometric engineering and elliptic genera”, J. High Energy Phys., 2008:3 (2008), 069, 81 pp., arXiv: hep-th/0310272 | DOI | MR
[12] Iqbal A., Kashani-Poor A. K., “$\mathrm{SU}(N)$ geometries and topological string amplitudes”, Adv. Theor. Math. Phys., 10 (2006), 1–32, arXiv: hep-th/0306032 | MR | Zbl
[13] Iqbal A., Kozçaz C., Vafa C., “The refined topological vertex”, J. High Energy Phys., 2009:10 (2009), 069, 58 pp., arXiv: hep-th/0701156 | DOI | MR
[14] Katz S., Klemm A., Vafa C., “Geometric engineering of quantum field theories”, Nuclear Phys. B, 497 (1997), 173–195, arXiv: hep-th/9609239 | DOI | MR | Zbl
[15] Klebanov I. R., Witten E., “Superconformal field theory on threebranes at a Calabi–Yau singularity”, Nuclear Phys. B, 536 (1999), 199–218, arXiv: hep-th/9807080 | DOI | MR | Zbl
[16] Kontsevich M., Soibelman Y., “Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants”, Commun. Number Theory Phys., 5 (2011), 231–352, arXiv: 1006.2706[math.AG] | MR | Zbl
[17] Kontsevich M., Soibelman Y., Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv: 0811.2435[math.AG] | MR
[18] Losev A., Moore G., Nekrasov N., Shatashvili S., “Four-dimensional avatars of two-dimensional RCFT”, Nuclear Phys. B Proc. Suppl., 46 (1996), 130–145, arXiv: hep-th/9509151 | DOI | MR | Zbl
[19] Maulik D., Nekrasov N., Okounkov A., Pandharipande R., “Gromov–Witten theory and Donaldson–Thomas theory, I”, Compos. Math., 142 (2006), 1263–1285, arXiv: math.AG/0312059 | DOI | MR | Zbl
[20] Morrison A., Mozgovoy S., Nagao K., Szendrői B., “Motivic Donaldson–Thomas invariants of the conifold and the refined topological vertex”, Adv. Math., 230 (2012), 2065–2093, arXiv: 1107.5017[math.AG] | DOI | MR | Zbl
[21] Nagao K., Nakajima H., “Counting invariant of perverse coherent sheaves and its wall-crossing”, Int. Math. Res. Not., 2011 (2011), 3885–3938, arXiv: 0809.2992[math.AG] | MR | Zbl
[22] Nakajima H., Yoshioka K., “Instanton counting on blowup. I: 4-dimensional pure gauge theory”, Invent. Math., 162 (2005), 313–355, arXiv: math.AG/0306198 | DOI | MR | Zbl
[23] Nakajima H., Yoshioka K., “Instanton counting on blowup. II: $k$-theoretic partition function”, Transform. Groups, 10 (2005), 489–519, arXiv: math.AG/0505553 | DOI | MR | Zbl
[24] Nekrasov N. A., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864, arXiv: hep-th/0206161 | MR | Zbl
[25] Nekrasov N. A., Okounkov A., “Seiberg–Witten theory and random partitions”, The Unity of Mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 525–596, arXiv: hep-th/0306238 | DOI | MR | Zbl
[26] Nekrasov N. A., Okounkov A., The index of M-theory, work in progress
[27] Okounkov A., The index and the vertex, Talk at Brandeis–Harvard-MIT-Northeastern Joint Mathematics Colloquium, December 1, 2011
[28] Pandharipande R., Thomas R. P., “Curve counting via stable pairs in the derived category”, Invent. Math., 178 (2009), 407–447 | DOI | MR | Zbl
[29] Saito M., “Modules de Hodge polarisables”, Publ. Res. Inst. Math. Sci., 24 (1988), 849–995 | DOI | MR | Zbl
[30] Szendrői B., “Non-commutative Donaldson–Thomas invariants and the conifold”, Geom. Topol., 12 (2008), 1171–1202, arXiv: 0705.3419[math.AG] | DOI | MR | Zbl
[31] Tachikawa Y., “Five-dimensional Chern–Simons terms and Nekrasov's instanton counting”, J. High Energy Phys., 2004 (2004), 050, 13 pp., arXiv: hep-th/0401184 | DOI | MR