@article{SIGMA_2012_8_a85,
author = {Mark A. Walton},
title = {On {Affine} {Fusion} and the {Phase} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a85/}
}
Mark A. Walton. On Affine Fusion and the Phase Model. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a85/
[1] Altschüler D., Bauer M., Itzykson C., “The branching rules of conformal embeddings”, Comm. Math. Phys., 132 (1990), 349–364 | DOI | MR | Zbl
[2] Bogoliubov N. M., Izergin A. G., Kitanine N. A., “Correlation functions for a strongly correlated boson system”, Nuclear Phys. B, 516 (1998), 501–528 ; arXiv: solv-int/9710002 | DOI | MR | Zbl
[3] Cummins C. J., Mathieu P., Walton M. A., “Generating functions for WZNW fusion rules”, Phys. Lett. B, 254 (1991), 386–390 | DOI | MR | Zbl
[4] Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997 | DOI | MR
[5] Feingold A. J., Fredenhagen S., “A new perspective on the Frenkel–Zhu fusion rule theorem”, J. Algebra, 320 (2008), 2079–2100 ; arXiv: 0710.1620 | DOI | MR | Zbl
[6] Fomin S., Greene C., “Noncommutative Schur functions and their applications”, Discrete Math., 193 (1998), 179–200 | DOI | MR | Zbl
[7] Fulton W., Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[8] Gepner D., Witten E., “String theory on group manifolds”, Nuclear Phys. B, 278 (1986), 493–549 | DOI | MR
[9] Goodman F. M., Nakanishi T., “Fusion algebras in integrable systems in two dimensions”, Phys. Lett. B, 262 (1991), 259–264 | DOI | MR
[10] Irvine S. E., Walton M. A., “Schubert calculus and threshold polynomials of affine fusion”, Nuclear Phys. B, 584 (2000), 795–809 ; arXiv: hep-th/0004055 | DOI | MR | Zbl
[11] Kac V. G., Peterson D. H., “Infinite-dimensional Lie algebras, theta functions and modular forms”, Adv. Math., 53 (1984), 125–264 | DOI | MR | Zbl
[12] Kirillov A. N., Mathieu P., Sénéchal D., Walton M. A., Can fusion coefficients be calculated from the depth rule?, Nuclear Phys. B, 391 (1993), 651–674 ; arXiv: hep-th/9203004 | DOI | MR
[13] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[14] Korff C., “Noncommutative Schur polynomials and the crystal limit of the $U_q\widehat{{\mathfrak {sl}}}(2)$-vertex model”, J. Phys. A: Math. Theor., 43 (2010), 434021, 20 pp. ; arXiv: 1006.4710 | DOI | MR | Zbl
[15] Korff C., “The ${\mathrm su}(n)$ WZNW fusion ring as integrable model: a new algorithm to compute fusion coefficients”, Infinite Analysis 2010 —Developments in Quantum Integrable Systems, RIMS Kôkyûroku Bessatsu B, 28, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, 121–153 ; arXiv: 1106.5342 | MR
[16] Korff C., Stroppel C., “The $\widehat{{\mathfrak{sl}}}(n)_k$-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology”, Adv. Math., 225 (2010), 200–268 ; arXiv: 0909.2347 | DOI | MR | Zbl
[17] Nepomechie R. I., “A spin chain primer”, Internat. J. Modern Phys. B, 13 (1999), 2973–2985 ; arXiv: hep-th/9810032 | DOI | MR | Zbl
[18] Verlinde E., “Fusion rules and modular transformations in 2D conformal field theory”, Nuclear Phys. B, 300 (1988), 360–376 | DOI | MR | Zbl
[19] Walton M. A., “Tensor products and fusion rules”, Canad. J. Phys., 72 (1994), 527–536 | DOI | MR | Zbl