@article{SIGMA_2012_8_a84,
author = {Ryu Sasaki and Kouchi Takemura},
title = {Global {Solutions} of {Certain} {Second-Order} {Differential} {Equations} with a {High} {Degree} of {Apparent} {Singularity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a84/}
}
TY - JOUR AU - Ryu Sasaki AU - Kouchi Takemura TI - Global Solutions of Certain Second-Order Differential Equations with a High Degree of Apparent Singularity JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a84/ LA - en ID - SIGMA_2012_8_a84 ER -
%0 Journal Article %A Ryu Sasaki %A Kouchi Takemura %T Global Solutions of Certain Second-Order Differential Equations with a High Degree of Apparent Singularity %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a84/ %G en %F SIGMA_2012_8_a84
Ryu Sasaki; Kouchi Takemura. Global Solutions of Certain Second-Order Differential Equations with a High Degree of Apparent Singularity. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a84/
[1] Adler V. È., “On a modification of Crum's method”, Theoret. and Math. Phys., 101 (1994), 1381–1386 | DOI | MR | Zbl
[2] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385 ; arXiv: hep-th/9405029 | DOI | MR
[3] Crum M. M., “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127 ; arXiv: physics/9908019 | DOI | MR
[4] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. II, Gauthier-Villars, Paris, 1989
[5] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Comm. Math. Phys., 103 (1986), 177–240 | DOI | MR | Zbl
[6] García-Gutiérrez L., Odake S., Sasaki R., “Modification of Crum's theorem for ‘discrete’ quantum mechanics”, Progr. Theoret. Phys., 124 (2010), 1–26 ; arXiv: 1004.0289 | DOI | Zbl
[7] Gendenshtein L. E., “Derivation of exact spectra of the Schrödinger equation by means of supersymmetry”, JETP Lett., 38 (1983), 356–359
[8] Gibbons J., Veselov A. P., “On the rational monodromy-free potentials with sextic growth”, J. Math. Phys., 50 (2009), 013513, 25 pp. ; arXiv: 0807.3502 | DOI | MR | Zbl
[9] Gómez-Ullate D., Kamran N., Milson R., “A conjecture on exceptional orthogonal polynomials”, Found. Comput. Math. (to appear)
[10] Gómez-Ullate D., Kamran N., Milson R., “Two-step Darboux transformations and exceptional Laguerre polynomials”, J. Math. Anal. Appl., 387 (2012), 410–418 ; arXiv: 1103.5724 | DOI | MR | Zbl
[11] Hiroe K., Oshima T. http://akagi.ms.u-tokyo.ac.jp/õshima/index.html
[12] Ho C.-L., Sasaki R., Takemura K., “Confluence of apparent singularities in multi-indexed orthogonal polynomials: the Jacobi case”, arXiv: 1210.0207
[13] Infeld L., Hull T. E., “The factorization method”, Rev. Modern Physics, 23 (1951), 21–68 | DOI | MR | Zbl
[14] Krein M. G., “On a continual analogue of a Christoffel formula from the theory of orthogonal polynomials”, Dokl. Akad. Nauk SSSR, 113 (1957), 970–973 | MR | Zbl
[15] Oblomkov A. A., “Monodromy-free Schrödinger operators with quadratically increasing potential”, Theoret. and Math. Phys., 121 (1999), 1574–1584 | DOI | MR | Zbl
[16] Odake S., Sasaki R., “Crum's theorem for ‘discrete’ quantum mechanics”, Progr. Theoret. Phys., 122 (2009), 1067–1079 ; arXiv: 0902.2593 | DOI | Zbl
[17] Odake S., Sasaki R., “Exact solutions in the Heisenberg picture and annihilation-creation operators”, Phys. Lett. B, 641 (2006), 112–117 ; arXiv: quant-ph/0605221 | DOI | MR | Zbl
[18] Odake S., Sasaki R., “Exactly solvable ‘discrete’ quantum mechanics; shape invariance, Heisenberg solutions, annihilation-creation operators and coherent states”, Progr. Theoret. Phys., 119 (2008), 663–700 ; arXiv: 0802.1075 | DOI | Zbl
[19] Odake S., Sasaki R., “Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials”, Phys. Lett. B, 702 (2011), 164–170 ; arXiv: 1105.0508 | DOI | MR
[20] Odake S., Sasaki R., “Exceptional Askey–Wilson-type polynomials through Darboux–Crum transformations”, J. Phys. A: Math. Theor., 43 (2010), 335201, 18 pp. ; arXiv: 1004.0544 | DOI | MR | Zbl
[21] Odake S., Sasaki R., “Exceptional ($X_{\ell}$) ($q$)-Racah polynomials”, Progr. Theoret. Phys., 125 (2011), 851–870 ; arXiv: 1102.0813 | DOI | Zbl
[22] Odake S., Sasaki R., “Discrete quantum mechanics”, J. Phys. A: Math. Theor., 44 (2011), 353001, 47 pp. ; arXiv: 1104.0473 | DOI | MR | Zbl
[23] Odake S., Sasaki R., “Dual Christoffel transformations”, Progr. Theoret. Phys., 126 (2011), 1–34 ; arXiv: 1101.5468 | DOI | Zbl
[24] Odake S., Sasaki R., “Infinitely many shape invariant discrete quantum mechanical systems and new exceptional orthogonal polynomials related to the Wilson and Askey–Wilson polynomials”, Phys. Lett. B, 682 (2009), 130–136 ; arXiv: 0909.3668 | DOI | MR
[25] Odake S., Sasaki R., “Multi-indexed ($q$)-Racah polynomials”, J. Phys. A: Math. Theor., 45 (2012), 385201, 21 pp. ; arXiv: 1203.5868 | DOI | Zbl
[26] Odake S., Sasaki R., “Multi-indexed Wilson and Askey–Wilson polynomials”, arXiv: 1207.5584
[27] Odake S., Sasaki R., “Orthogonal polynomials from Hermitian matrices”, J. Math. Phys., 49 (2008), 053503, 43 pp. ; arXiv: 0712.4106 | DOI | MR | Zbl
[28] Odake S., Sasaki R., “Unified theory of annihilation-creation operators for solvable (“discrete”) quantum mechanics”, J. Math. Phys., 47 (2006), 102102, 33 pp. ; arXiv: quant-ph/0605215 | DOI | MR | Zbl
[29] Oshima T., “Classification of Fuchsian systems and their connection problem”, arXiv: 0811.2916