Solutions of the Dirac equation in a magnetic field and intertwining operators
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The intertwining technique has been widely used to study the Schrödinger equation and to generate new Hamiltonians with known spectra. This technique can be adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system to be solved is a relativistic particle placed in a magnetic field with cylindrical symmetry whose intensity decreases as the distance to the symmetry axis grows and its field lines are parallel to the $x-y$ plane. It will be shown that the Hamiltonian under study turns out to be shape invariant.
Keywords: intertwining technique; supersymmetric quantum mechanics; Dirac equation.
@article{SIGMA_2012_8_a81,
     author = {Alonso Contreras-Astorga and David J. Fern\'andez C. and Javier Negro},
     title = {Solutions of the {Dirac} equation in a magnetic field and intertwining operators},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a81/}
}
TY  - JOUR
AU  - Alonso Contreras-Astorga
AU  - David J. Fernández C.
AU  - Javier Negro
TI  - Solutions of the Dirac equation in a magnetic field and intertwining operators
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a81/
LA  - en
ID  - SIGMA_2012_8_a81
ER  - 
%0 Journal Article
%A Alonso Contreras-Astorga
%A David J. Fernández C.
%A Javier Negro
%T Solutions of the Dirac equation in a magnetic field and intertwining operators
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a81/
%G en
%F SIGMA_2012_8_a81
Alonso Contreras-Astorga; David J. Fernández C.; Javier Negro. Solutions of the Dirac equation in a magnetic field and intertwining operators. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a81/

[1] Bagrov V.G., Samsonov B.F., “Darboux transformation and elementary exact solutions of the Schrödinger equation”, Pramana J. Phys., 49 (1997), 563–580 | DOI

[2] Castaños O., Frank A., López R., Urrutia L.F., “Soluble extensions of the Dirac oscillator with exact and broken supersymmetry”, Phys. Rev. D, 43 (1991), 544–547 | DOI

[3] Contreras-Astorga A., Fernández C. D.J., “Supersymmetric partners of the trigonometric Pöschl–Teller potentials”, J. Phys. A: Math. Theor., 41 (2008), 475303, 18 pp. ; arXiv: 0809.2760 | DOI | MR | Zbl

[4] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385 ; arXiv: hep-th/9405029 | DOI | MR

[5] de Lima Rodrigues R., “Generalized ladder operators for the Dirac–Coulomb problem via SUSY QM”, Phys. Lett. A, 326 (2004), 42–46 ; arXiv: hep-th/0311091 | DOI | MR | Zbl

[6] Debergh N., Pecheritsin A.A., Samsonov B.F., Van den Bossche B., “Darboux transformations of the one-dimensional stationary Dirac equation”, J. Phys. A: Math. Gen., 35 (2002), 3279–3287 ; arXiv: quant-ph/0111163 | DOI | MR | Zbl

[7] Fernández C. D.J., “New hydrogen-like potentials”, Lett. Math. Phys., 8 (1984), 337–343 | DOI | MR

[8] Fernández C. D.J., Fernández-García N., “Higher-order supersymmetric quantum mechanics”, AIP Conf. Proc., 744 (2005), 236–273 ; arXiv: quant-ph/0502098 | DOI | MR

[9] Griffiths D.J., Introduction to electrodynamics, 3rd ed., Addison-Wesley, 1999

[10] Ioffe M.V., Kuru Ş., Negro J., Nieto L.M., “SUSY approach to Pauli Hamiltonians with an axial symmetry”, J. Phys. A: Math. Gen., 39 (2006), 6987–7001 ; arXiv: hep-th/0603005 | DOI | MR | Zbl

[11] Jakubsky V., Nieto L.M., Plyushchay M.S., “Klein tunneling in carbon nanostructures: a free-particle dynamics in disguise”, Phys. Rev. D, 83 (2011), 047702, 4 pp. ; arXiv: 1010.0569 | DOI

[12] Jakubsky V., Plyushchay M.S., “Supersymmetric twisting of carbon nanotubes”, Phys. Rev. D, 85 (2012), 045035, 10 pp. ; arXiv: 1111.3776 | DOI

[13] Junker G., Roy P., “Conditionally exactly solvable potentials: a supersymmetric construction method”, Ann. Physics, 270 (1998), 155–177 ; arXiv: quant-ph/9803024 | DOI | MR | Zbl

[14] Khare A., “Supersymmetry in quantum mechanics”, AIP Conf. Proc., 744 (2005), 133–165 ; arXiv: math-ph/0409003 | DOI | MR

[15] Mielnik B., “Factorization method and new potentials with the oscillator spectrum”, J. Math. Phys., 25 (1984), 3387–3389 | DOI | MR | Zbl

[16] Nieto L.M., Pecheritsin A.A., Samsonov B.F., “Intertwining technique for the one-dimensional stationary Dirac equation”, Ann. Physics, 305 (2003), 151–189 ; arXiv: quant-ph/0307152 | DOI | MR | Zbl

[17] Pozdeeva E., Schulze-Halberg A., “Darboux transformations for a generalized Dirac equation in two dimensions”, J. Math. Phys., 51 (2010), 113501, 15 pp. ; arXiv: 0904.0992 | DOI | MR

[18] Rosas-Ortiz J.O., “New families of isospectral hydrogen-like potentials”, J. Phys. A: Math. Gen., 31 (1998), L507–L513 ; arXiv: quant-ph/9803029 | DOI | MR | Zbl

[19] Sadiku M.N.O., Elements of electromagnetics, The Oxford Series in Electrical and Computer Engineering, 5th ed., Oxford University Press, New York, 2009

[20] Sukumar C.V., “Supersymmetry and the Dirac equation for a central Coulomb field”, J. Phys. A: Math. Gen., 18 (1985), L697–L701 | DOI | MR

[21] Sukumar C.V., “Supersymmetry, factorisation of the Schrödinger equation and a Hamiltonian hierarchy”, J. Phys. A: Math. Gen., 18 (1985), L57–L61 | DOI | MR | Zbl