@article{SIGMA_2012_8_a80,
author = {Chikashi Arita and Kohei Motegi},
title = {Entanglement properties of a higher-integer-spin {AKLT} model with quantum group symmetry},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a80/}
}
TY - JOUR AU - Chikashi Arita AU - Kohei Motegi TI - Entanglement properties of a higher-integer-spin AKLT model with quantum group symmetry JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a80/ LA - en ID - SIGMA_2012_8_a80 ER -
%0 Journal Article %A Chikashi Arita %A Kohei Motegi %T Entanglement properties of a higher-integer-spin AKLT model with quantum group symmetry %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a80/ %G en %F SIGMA_2012_8_a80
Chikashi Arita; Kohei Motegi. Entanglement properties of a higher-integer-spin AKLT model with quantum group symmetry. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a80/
[1] Affleck I., Kennedy T., Lieb E.H., Tasaki H., “Valence bond ground states in isotropic quantum antiferromagnets”, Comm. Math. Phys., 115 (1988), 477–528 | DOI | MR
[2] Amico L., Fazio R., Osterloh A., Vedral V., “Entanglement in many-body systems”, Rev. Modern Phys., 80 (2008), 517–576 ; arXiv: quant-ph/0703044 | DOI | MR | Zbl
[3] Arita C., Motegi K., “Spin-spin correlation functions of the $q$-valence-bond-solid state of an integer spin model”, J. Math. Phys., 52 (2011), 063303, 15 pp. ; arXiv: 1009.4018 | DOI | MR
[4] Arovas D.P., Auerbach A., Haldane F.D.M., “Extended Heisenberg models of antiferromagnetism: analogies to the fractional quantum Hall effect”, Phys. Rev. Lett., 60 (1988), 531–534 | DOI | MR
[5] Batchelor M.T., Mezincescu L., Nepomechie R.I., Rittenberg V., “$q$-deformations of the $\mathrm O(3)$ symmetric spin-$1$ Heisenberg chain”, J. Phys. A: Math. Gen., 23 (1990), L141–L144 | DOI | MR | Zbl
[6] Bennett C.H., DiVincenzo D.P., “Quantum information and computation”, Nature, 404 (2000), 247–255 | DOI
[7] Calabrese P., Cardy J., “Entanglement entropy and quantum field theory”, J. Stat. Mech. Theory Exp., 2004 (2004), P06002, 27 pp. ; arXiv: hep-th/0405152 | DOI | MR | Zbl
[8] Drinfel'd V.G., “Hopf algebras and the quantum Yang–Baxter equation”, Dokl. Akad. Nauk SSSR, 32 (1985), 254–258 | MR
[9] Fang H., Korepin V.E., Roychowdhury V., “Entanglement in a valence-bond-solid state”, Phys. Rev. Lett., 93 (2004), 227203, 4 pp. ; arXiv: quant-ph/0406067 | DOI
[10] Fannes M., Nachtergaele B., Werner R.F., “Exact antiferromagnetic ground-states of quantum spin chains”, Europhys. Lett., 10 (1989), 633–637 | DOI
[11] Freitag W.D., Müller-Hartmann E., “Complete analysis of two spin correlations of valence bond solid chains for all integer spins”, Z. Phys. B, 83 (1991), 381–390 | DOI
[12] García-Ripoll J.J., Martín-Delgado M.A., Cirac J.I., “Implementation of spin Hamiltonians in optical lattices”, Phys. Rev. Lett., 93 (2004), 250405, 4 pp. ; arXiv: cond-mat/0404566 | DOI
[13] Haldane F.D.M., “Continuum dynamics of the $1$-D Heisenberg antiferromagnet: identification with the $\mathrm O(3)$ nonlinear sigma model”, Phys. Lett. A, 93 (1983), 464–468 | DOI | MR
[14] Haldane F.D.M., “Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state”, Phys. Rev. Lett., 50 (1983), 1153–1156 | DOI | MR
[15] Jimbo M., “A $q$-difference analogue of $U(\mathfrak g)$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl
[16] Katsura H., Hirano T., Hatsugai Y., “Exact analysis of entanglement in gapped quantum spin chains”, Phys. Rev. B, 76 (2007), 012401, 4 pp. ; arXiv: cond-mat/0702196 | DOI
[17] Katsura H., Hirano T., Korepin V.E., “Entanglement in an $\mathrm{SU}(n)$ valence-bond-solid state”, J. Phys. A: Math. Theor., 41 (2008), 135304, 13 pp. ; arXiv: 0711.3882 | DOI | MR | Zbl
[18] Katsura H., Kawashima N., Kirillov A.N., Korepin V.E., Tanaka S., “Entanglement in valence-bond-solid states on symmetric graphs”, J. Phys. A: Math. Theor., 43 (2010), 255303, 28 pp. ; arXiv: 1003.2007 | DOI | MR | Zbl
[19] Klümper A., Schadschneider A., Zittartz J., “Equivalence and solution of anisotropic spin-$1$ models and generalized $t$-$J$ fermion models in one dimension”, J. Phys. A: Math. Gen., 24 (1991), L955–L959 | DOI | MR
[20] Klümper A., Schadschneider A., Zittartz J., “Groundstate properties of a generalized VBS-model”, Z. Phys. B, 87 (1992), 281–287 | DOI
[21] Klümper A., Schadschneider A., Zittartz J., “Matrix product ground states for one-dimensional spin-1 quantum antiferromagnets”, Europhys. Lett., 24 (1993), 293–297 ; arXiv: cond-mat/9307028 | DOI | Zbl
[22] Korepin V.E., Xu Y., “Entanglement in valence-bond-solid states”, Internat. J. Modern Phys. B, 24 (2010), 1361–1440 ; arXiv: 0908.2345 | DOI | MR | Zbl
[23] Lyoyd S., “A potentially realizable quantum computer”, Science, 261 (1993), 1569–1571 | DOI
[24] Motegi K., “The matrix product representation for the $q$-VBS state of one-dimensional higher integer spin model”, Phys. Lett. A, 374 (2010), 3112–3115 ; arXiv: 1003.0050 | DOI | MR | Zbl
[25] Orús R., “Geometric entanglement in a one-dimensional valence bond solid state”, Phys. Rev. A, 78 (2008), 062332, 4 pp. ; arXiv: 0808.0938 | DOI
[26] Orús R., “Universal geometric entanglement close to quantum phase transitions”, Phys. Rev. Lett., 100 (2008), 130502, 4 pp. ; arXiv: 0711.2556 | DOI
[27] Orús R., Dusuel S., Vidal J., “Equivalence of critical scaling laws for many-body entanglement in the Lipkin–Meshkov–Glick model”, Phys. Rev. Lett., 101 (2008), 025701, 4 pp. ; arXiv: 0803.3151 | DOI
[28] Orús R., Tu H.H., “Entanglement and $\mathrm{SU}(n)$ symmetry in one-dimensional valence-bond solid states”, Phys. Rev. B, 83 (2011), 201101(R), 4 pp. ; arXiv: 1103.3994 | DOI
[29] Orús R., Wei T.C., “Geometric entanglement of one-dimensional systems: bounds and scalings in the thermodynamic limit”, Quantum Inf. Comput., 11 (2011), 563–573 ; arXiv: 1006.5584 | MR | Zbl
[30] Orús R., Wei T.C., Tu H.H., “Phase diagram of the $\mathrm{SO}(n)$ blinear-biquadratic chain from many-body entanglement”, Phys. Rev. B, 84 (2011), 064409, 7 pp. ; arXiv: 1010.5029 | DOI
[31] Santos R.A., Korepin V.E., “Entanglement of disjoint blocks in the one-dimensional spin-1 VBS”, J. Phys. A: Math. Theor., 45 (2012), 125307, 19 pp. ; arXiv: 1110.3300 | DOI | MR | Zbl
[32] Santos R.A., Paraan F.N.C., Korepin V.E., Klümper A., “Entanglement spectra of $q$-deformed higher spin VBS states”, J. Phys. A: Math. Theor., 45 (2012), 175303, 14 pp. ; arXiv: 1201.5927 | DOI | MR | Zbl
[33] Santos R.A., Paraan F.N.C., Korepin V.E., Klümper A., “Entanglement spectra of the $q$-deformed Affleck–Kennedy–Lieb–Tasaki model and matrix product states”, Europhys. Lett., 98 (2012), 37005, 6 pp. ; arXiv: 1112.0517 | DOI
[34] Stéphan J.M., Misguich G., Alet F., “Geometric entanglement and Affleck–Ludwig boundary entropies in critical XXZ and Ising chains”, Phys. Rev. B, 82 (2010), 180406(R), 4 pp. ; arXiv: 1007.4161 | DOI
[35] Totsuka K., Suzuki M., “Hidden symmetry breaking in a generalized valence-bond solid model”, J. Phys. A: Math. Gen., 27 (1994), 6443–6456 | DOI | MR | Zbl
[36] Totsuka K., Suzuki M., “Matrix formalism for the VBS-type models and hidden order”, J. Phys. Condens. Matter, 7 (1995), 1639–1662 | DOI
[37] Verstraete F., Martín-Delgado M.A., Cirac J.I., “Diverging entanglement length in gapped quantum spin systems”, Phys. Rev. Lett., 92 (2004), 087201, 4 pp. ; arXiv: quant-ph/0311087 | DOI
[38] Wei T.C., Das D., Mukhopadyay S., Vishveshwara S., Goldbart P.M., “Global entanglement and quantum criticality in spin chains”, Phys. Rev. A, 71 (2005), 060305(R), 4 pp. ; arXiv: quant-ph/0405162 | DOI
[39] Wei T.C., Vishveshwara S., Goldbart P.M., “Global geometric entanglement in transverse-field $XY$ spin chains: finite and infinite systems”, Quantum Inf. Comput., 11 (2011), 326–354 ; arXiv: 1012.4114 | MR | Zbl
[40] Xu Y., Katsura H., Hirano T., Korepin V.E., “Entanglement and density matrix of a block of spins in AKLT model”, J. Stat. Phys., 133 (2008), 347–377 ; arXiv: 0802.3221 | DOI | MR | Zbl
[41] Zhang J., Wei T.C., Laflamme R., “Experimental quantum simulation of entanglement in many-body systems”, Phys. Rev. Lett., 107 (2011), 010501, 4 pp. ; arXiv: 1104.0275 | DOI