@article{SIGMA_2012_8_a8,
author = {Valentin Bonzom and Alok Laddha},
title = {Lessons from toy-models for the dynamics of loop quantum gravity},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a8/}
}
Valentin Bonzom; Alok Laddha. Lessons from toy-models for the dynamics of loop quantum gravity. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a8/
[1] Alesci E., Noui K., Sardelli F., “Spin-foam models and the physical scalar product”, Phys. Rev. D, 78 (2008), 104009, 16 pp. ; arXiv: 0807.3561 | DOI
[2] Alesci E., Rovelli C., “Regularization of the Hamiltonian constraint compatible with the spinfoam dynamics”, Phys. Rev D, 82 (2010), 044007, 17 pp. ; arXiv: 1005.0817 | DOI
[3] Alesci E., Thiemann T., Zipfel A., Linking covariant and canonical LQG: new solutions to the Euclidean scalar constraint, arXiv: 1109.1290
[4] Ambjørn J., Durhuus B., Jónsson T., “Three-dimensional simplicial quantum gravity and generalized matrix models”, Modern Phys. Lett. A, 6 (1991), 1133–1146 | DOI | MR | Zbl
[5] Anderson R.W., Aquilanti V., Marzuoli A., “$3nj$ morphogenesis and semiclassical disentangling”, J. Phys. Chem. A, 113 (2009), 15106–15117 ; arXiv: 1001.4386 | DOI
[6] Aquilanti V., Bitencourt A.C.P., da S. Ferreira C., Marzuoli A., Ragni M., “Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity”, Phys. Scr., 78 (2008), 058103, 7 pp. ; arXiv: 0901.1074 | DOI | Zbl
[7] Aquilanti V., Haggard H.M., Hedeman A., Jeevanjee N., Littlejohn R., Yu L., Semiclassical mechanics of the Wigner $6j$-symbol, arXiv: 1009.2811
[8] Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152 ; arXiv: gr-qc/0404018 | DOI | MR | Zbl
[9] Ashtekar A., Pawlowski T., Singh P., “Quantum nature of the big bang: improved dynamics”, Phys. Rev. D, 74 (2006), 084003, 23 pp. ; arXiv: gr-qc/0607039 | DOI | MR | Zbl
[10] Baez J.C., “An introduction to spin foam models of BF theory and quantum gravity”, Geometry and Quantum Physics (Schladming 1999), Lecture Notes in Phys., 543, Springer, Berlin, 25–93 | DOI | MR | Zbl
[11] Baez J.C., Perez A., “Quantization of strings and branes coupled to BF theory”, Adv. Theor. Math. Phys., 11 (2007), 451–469 ; arXiv: gr-qc/0605087 | MR | Zbl
[12] Baez J.C., Wise D.K., Crans A.S., “Exotic statistics for strings in 4D BF theory”, Adv. Theor. Math. Phys., 11 (2007), 707–749 ; arXiv: gr-qc/0603085 | MR | Zbl
[13] Bahr B., Dittrich B., “(Broken) gauge symmetries and constraints in Regge calculus”, Classical Quantum Gravity, 26 (2009), 225011, 34 pp. ; arXiv: 0905.1670 | DOI | MR | Zbl
[14] Bahr B., Dittrich B., “Improved and perfect actions in discrete gravity”, Phys. Rev. D, 80 (2009), 124030, 15 pp. ; arXiv: 0907.4323 | DOI
[15] Bahr B., Dittrich B., He S., “Coarse graining free theories with gauge symmetries: the linearized case”, New J. Phys., 13 (2011), 045009, 34 pp. ; arXiv: 1011.3667 | DOI
[16] Bahr B., Dittrich B., Ryan J.P., Spin foam models with finite groups, arXiv: 1103.6264
[17] Bahr B., Dittrich B., Steinhaus S., “Perfect discretization of reparametrization invariant path integrals”, Phys. Rev. D, 83 (2011), 19 pp. ; arXiv: 1101.4775 | DOI | Zbl
[18] Baratin A., Girelli F., Oriti D., “Diffeomorphisms in group field theories”, Phys. Rev. D, 83 (2011), 104051, 22 pp. ; arXiv: 1101.0590 | DOI
[19] Barrett J.W., Crane L., “An algebraic interpretation of the Wheeler–DeWitt equation”, Classical Quantum Gravity, 14 (1997), 2113–2121 ; arXiv: gr-qc/9609030 | DOI | MR | Zbl
[20] Barrett J.W., Dowdall R.J., Fairbairn W.J., Gomes H., Hellmann F., Pereira R., “Asymptotics of 4d spin foam models”, Gen. Relativity Gravitation, 43 (2011), 2421–2436 ; arXiv: 1003.1886 | DOI | MR | Zbl
[21] Barrett J.W., Fairbairn W.J., Hellmann F., “Quantum gravity asymptotics from the ${\rm SU}(2)$ $15j$-symbol”, Internat. J. Modern Phys. A, 25 (2010), 2897–2916 ; arXiv: 0912.4907 | DOI | MR | Zbl
[22] Barrett J.W., Naish-Guzman I., “The Ponzano–Regge model”, Classical Quantum Gravity, 26 (2011), 155014, 48 pp. ; arXiv: 0803.3319 | DOI
[23] Bergeron M., Semenoff G.W., Szabo R.J., “Canonical BF-type topological field theory and fractional statistics of strings”, Nuclear Phys. B, 437 (1995), 695–721 ; arXiv: hep-th/9407020 | DOI | MR | Zbl
[24] Blau M., Thompson G., “A new class of topological field theories and the Ray–{S}inger torsion”, Phys. Lett. B, 228 (1989), 64–68 | DOI | MR
[25] Blau M., Thompson G., “Topological gauge theories of antisymmetric tensor fields”, Ann. Physics, 205 (1991), 130–172 | DOI | MR | Zbl
[26] Blohmann C., Fernandes M.C.B., Weinstein A., Groupoid symmetry and constraints in general relativity, arXiv: 1003.2857
[27] Bonzom V., “Spin foam models and the Wheeler–DeWitt equation for the quantum 4-simplex”, Phys. Rev. D, 84 (2011), 024009, 13 pp. ; arXiv: 1101.1615 | DOI
[28] Bonzom V., Fleury P., Asymptotics of Wigner $3nj$-symbols with small and large angular momenta: an elementary method, arXiv: 1108.1569
[29] Bonzom V., Freidel L., “The Hamiltonian constraint in 3d Riemannian loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 195006, 24 pp. ; arXiv: 1101.3524 | DOI | MR | Zbl
[30] Bonzom V., Gurau R., Riello A., Rivasseau V., “Critical behavior of colored tensor models in the large $N$ limit”, Nuclear Phys. B, 853 (2011), 174–195 ; arXiv: 1105.3122 | DOI | MR | Zbl
[31] Bonzom V., Livine E.R., Yet another recursion relation for the $6j$-symbol, arXiv: 1103.3415
[32] Bonzom V., Livine E.R., Smerlak M., Speziale S., “Towards the graviton from spinfoams: the complete perturbative expansion of the 3d toy model”, Nuclear Phys. B, 804 (2008), 507–526 ; arXiv: 0802.3983 | DOI | MR | Zbl
[33] Bonzom V., Livine E.R., Speziale S., “Recurrence relations for spin foam vertices”, Classical Quantum Gravity, 27 (2010), 125002, 32 pp. ; arXiv: 0911.2204 | DOI | MR | Zbl
[34] Bonzom V., Smerlak M., Bubble divergences: sorting out topology from cell structure, arXiv: 1103.3961
[35] Bonzom V., Smerlak M., “Bubble divergences from cellular cohomology”, Lett. Math. Phys., 93 (2010), 295–305 ; arXiv: 1004.5196 | DOI | MR | Zbl
[36] Bonzom V., Smerlak M., Bubble divergences from twisted cohomology, arXiv: 1008.1476
[37] Bonzom V., Smerlak M., Gauge symmetries in spinfoam gravity: the case for ‘cellular quantization’, arXiv: 1201.4996
[38] Carfora M., Marzuoli A., Rasetti M., “Quantum tetrahedra”, J. Phys. Chem. A, 113 (2009), 15376–15383 ; arXiv: 1001.4402 | DOI
[39] Cattaneo A.S., Cotta-Ramusino P., Fröhlich J., Martellini M., “Topological BF theories in 3 and 4 dimensions”, J. Math. Phys., 36 (1995), 6137–6160 ; arXiv: hep-th/9505027 | DOI | MR | Zbl
[40] Cattaneo A.S., Cotta-Ramusino P., Fucito F., Martellini M., Rinaldi M., Tanzini A., Zeni M., “Four-dimensional {Y}ang–{M}ills theory as a deformation of topological BF theory”, Comm. Math. Phys., 197 (1998), 571–621 ; arXiv: hep-th/9705123 | DOI | MR | Zbl
[41] Constantinidis C.P., Piguet O., Gieres F., Sarandy M.S., “On the symmetries of BF models and their relation with gravity”, J. High Energy Phys., 2002:1 (2002), 017, 25 pp. ; arXiv: hep-th/0111273 | DOI | MR
[42] David F., “A model of random surfaces with nontrivial critical behaviour”, Nuclear Phys. B, 257 (1985), 543–576 | DOI | MR
[43] De Pietri R., Freidel L., “${\rm so}(4)$ Plebański action and relativistic spin-foam model”, Classical Quantum Gravity, 16 (1999), 2187–2196 ; arXiv: gr-qc/9804071 | DOI | MR | Zbl
[44] Di Francesco P., Ginsparg P., Zinn-Justin J., “2D gravity and random matrices”, Phys. Rep., 254:1–2 (1995), 133 pp. ; arXiv: hep-th/9306153 | DOI | MR
[45] Dittrich B., Eckert F.C., Martin-Benito M., Coarse graining methods for spin net and spin foam models, arXiv: 1109.4927
[46] Dittrich B., Höhn P.A., “From covariant to canonical formulations of discrete gravity”, Classical Quantum Gravity, 27 (2010), 155001, 37 pp. ; arXiv: 0912.1817 | DOI | MR | Zbl
[47] Dittrich B., Ryan J.P., “Phase space descriptions for simplicial 4D geometries”, Classical Quantum Gravity, 28 (2011), 065006, 34 pp. ; arXiv: 0807.2806 | DOI | MR | Zbl
[48] Dittrich B., Ryan J.P., “Simplicity in simplicial phase space”, Phys. Rev. D, 82 (2010), 064026, 19 pp. ; arXiv: 1006.4295 | DOI
[49] Dittrich B., Thiemann T., “Testing the master constraint programme for loop quantum gravity. I. General framework”, Classical Quantum Gravity, 23 (2006), 1025–1065 ; arXiv: gr-qc/0411138 | DOI | MR | Zbl
[50] Dittrich B., Thiemann T., “Testing the master constraint programme for loop quantum gravity. II. Finite-dimensional systems”, Classical Quantum Gravity, 23 (2006), 1067–1088 ; arXiv: gr-qc/0411139 | DOI | MR | Zbl
[51] Dittrich B., Thiemann T., “Testing the master constraint programme for loop quantum gravity. III. ${\rm SL}(2,{\mathbb R})$ models”, Classical Quantum Gravity, 23 (2006), 1089–1120 ; arXiv: gr-qc/0411140 | DOI | MR | Zbl
[52] Dittrich B., Thiemann T., “Testing the master constraint programme for loop quantum gravity. IV. Free field theories”, Classical Quantum Gravity, 23 (2006), 1121–1142 ; arXiv: gr-qc/0411141 | DOI | MR | Zbl
[53] Dittrich B., Thiemann T., “Testing the master constraint programme for loop quantum gravity. V. Interacting field theories”, Classical Quantum Gravity, 23 (2006), 1143–1162 ; arXiv: gr-qc/0411142 | DOI | MR | Zbl
[54] Dupuis M., Livine E.R., “Pushing the asymptotics of the $6j$-symbol further”, Phys. Rev. D, 80 (2009), 024035, 14 pp. ; arXiv: 0905.4188 | DOI | MR
[55] Dupuis M., Livine E.R., “The $6j$-symbol: recursion, correlations and asymptotics”, Classical Quantum Gravity, 27 (2010), 135003, 15 pp. ; arXiv: 0910.2425 | DOI | MR | Zbl
[56] Fairbairn W.J., Perez A., “Extended matter coupled to BF theory”, Phys. Rev. D, 78 (2008), 024013, 21 pp. ; arXiv: 0709.4235 | DOI | MR
[57] Freidel L., “Group field theory: an overview”, Internat. J. Theoret. Phys., 44 (2005), 1769–1783 ; arXiv: hep-th/0505016 | DOI | MR | Zbl
[58] Freidel L., Krasnov K., Puzio R., “BF description of higher-dimensional gravity theories”, Adv. Theor. Math. Phys., 3 (1999), 1289–1324 ; arXiv: hep-th/9901069 | MR | Zbl
[59] Freidel L., Louapre D., “Ponzano–Regge model revisited. I. Gauge fixing, observables and interacting spinning particles”, Classical Quantum Gravity, 21 (2004), 5685–5726 ; arXiv: hep-th/0401076 | DOI | MR | Zbl
[60] Freidel L., Speziale S., On the relations between gravity and BF theories, arXiv: 1201.4247
[61] Freidel L., Speziale S., “Twisted geometries: a geometric parametrisation of SU(2) phase space”, Phys. Rev. D, 82 (2010), 084040, 16 pp. ; arXiv: 1001.2748 | DOI
[62] Freidel L., Starodubtsev A., Quantum gravity in terms of topological observables, arXiv: hep-th/0501191
[63] Frohman C., Kania-Bartoszynska J., Dubois' torsion, A-polynomial and quantum invariants, arXiv: 1101.2695
[64] Gambini R., Lewandowski J., Marolf D., Pullin J., “On the consistency of the constraint algebra in spin network quantum gravity”, Internat. J. Modern Phys. D, 7 (1998), 97–109 ; arXiv: gr-qc/9710018 | DOI | MR | Zbl
[65] Gieres F., Grimstrup J.M., Nieder H., Pisar T., Schweda M., “Topological field theories and their symmetries within the Batalin–Vilkovisky framework”, Phys. Rev. D, 66 (2002), 025027, 14 pp. ; arXiv: hep-th/0111258 | DOI | MR
[66] Giulini D., Marolf D., “On the generality of refined algebraic quantization”, Classical Quantum Gravity, 16 (1999), 2479–2488 ; arXiv: gr-qc/9812024 | DOI | MR | Zbl
[67] Gross M., “Tensor models and simplicial quantum gravity in $>2$-D”, Nuclear Phys. B Proc. Suppl., 25A (1992), 144–149 | DOI | MR | Zbl
[68] Gurau R., The complete $1/N$ expansion of colored tensor models in arbitrary dimension, arXiv: 1102.5759 | MR
[69] Gurau R., Ryan J.P., Colored tensor models – a review, arXiv: 1109.4812
[70] Hájícek P., Isham C.J., “The symplectic geometry of a parametrized scalar field on a curved background”, J. Math. Phys., 37 (1996), 3505–3521 ; arXiv: gr-qc/9510028 | DOI | MR
[71] Han M., Thiemann T., “On the relation between operator constraint, master constraint, reduced phase space and path integral quantization”, Classical Quantum Gravity, 27 (2010), 225019, 46 pp. ; arXiv: 0911.3428 | DOI | MR | Zbl
[72] Horowitz G.T., “Exactly soluble diffeomorphism invariant theories”, Comm. Math. Phys., 125 (1989), 417–437 | DOI | MR | Zbl
[73] Jeffrey L.C., “Chern–Simons–Witten invariants of lens spaces and torus bundles, and the semiclassical approximation”, Comm. Math. Phys., 147 (1992), 563–604 | DOI | MR | Zbl
[74] Kazakov V.A., “Bilocal regularization of models of random surfaces”, Phys. Lett. B, 150 (1985), 282–284 | DOI | MR
[75] Kitaev A.Y., “Fault-tolerant quantum computation by anyons”, Ann. Physics, 303 (2003), 2–30 ; arXiv: quant-ph/9707021 | DOI | MR | Zbl
[76] Kuchar K., “Parametrized scalar field on $R\times S^1$: dynamical pictures, spacetime diffeomorphisms, and conformal isometries”, Phys. Rev. D, 39 (1989), 1579–1593 | DOI | MR
[77] Laddha A., Varadarajan M., “Hamiltonian constraint in polymer parametrized field theory”, Phys. Rev D, 83 (2011), 025019, 27 pp. ; arXiv: 1011.2463 | DOI
[78] Laddha A., Varadarajan M., “Polymer quantization of the free scalar field and its classical limit”, Classical Quantum Gravity, 27 (2010), 175010, 45 pp. ; arXiv: 1001.3505 | DOI | MR | Zbl
[79] Laddha A., Varadarajan M., “The diffeomorphism constraint operator in loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 195010, 29 pp. ; arXiv: 1105.0636 | DOI | MR | Zbl
[80] Levin M.A., Wen X.G., “String-net condensation: a physical mechanism for topological phases”, Phys. Rev. B, 71 (2005), 045110, 21 pp. ; arXiv: cond-mat/0404617 | DOI
[81] Lewandowski J., Marolf D., “Loop constraints: a habitat and their algebra”, Internat. J. Modern Phys. D, 7 (1998), 299–330 ; arXiv: gr-qc/9710016 | DOI | MR | Zbl
[82] Lewandowski J., Okolów A., Sahlmann H., Thiemann T., “Uniqueness of diffeomorphism invariant states on holonomy-flux algebras”, Comm. Math. Phys., 267 (2006), 703–733 ; arXiv: gr-qc/0504147 | DOI | MR | Zbl
[83] Livine E.R., Speziale S., “New spinfoam vertex for quantum gravity”, Phys. Rev. D, 76 (2007), 084028, 14 pp. ; arXiv: 0705.0674 | DOI | MR
[84] Livine E.R., Tambornino J., “Spinor representation for loop quantum gravity”, J. Math. Phys., 53 (2012), 012503, 33 pp. ; arXiv: 1105.3385 | DOI
[85] Lucchesi C., Piguet O., Sorella S.P., “Renormalization and finiteness of topological BF theories”, Nuclear Phys. B, 395 (1993), 325–353 ; arXiv: hep-th/9208047 | DOI | MR
[86] Maggiore N., Sorella S.P., “Perturbation theory for antisymmetric tensor fields in four dimensions”, Internat. J. Modern Phys. A, 8 (1993), 929–945 ; arXiv: hep-th/9204044 | DOI | MR | Zbl
[87] Nicolai H., Peeters K., Zamaklar M., “Loop quantum gravity: an outside view”, Classical Quantum Gravity, 22 (2005), R193–R247 ; arXiv: hep-th/0501114 | DOI | MR | Zbl
[88] Noui K., Perez A., “Three-dimensional loop quantum gravity: physical scalar product and spin-foam models”, Classical Quantum Gravity, 22 (2005), 1739–1761 ; arXiv: gr-qc/0402110 | DOI | MR | Zbl
[89] Noui K., Perez A., Pranzetti D., Canonical quantization of non-commutative holonomies in $2+1$ loop quantum gravity, arXiv: 1105.0439
[90] Ooguri H., “Partition functions and topology-changing amplitudes in the three-dimensional lattice gravity of Ponzano and Regge”, Nuclear Phys. B, 382 (1992), 276–304 ; arXiv: hep-th/9112072 | DOI | MR | Zbl
[91] Ooguri H., “Topological lattice models in four dimensions”, Modern Phys. Lett. A, 7 (1992), 2799–2810 ; arXiv: hep-th/9205090 | DOI | MR | Zbl
[92] Oriti D., The group field theory approach to quantum gravity: some recent results, arXiv: 0912.2441
[93] Perez A., Introduction to loop quantum gravity and spin foams, arXiv: gr-qc/0409061
[94] Perez A., “Regularization ambiguities in loop quantum gravity”, Phys. Rev. D, 73 (2006), 044007, 18 pp. ; arXiv: gr-qc/0509118 | DOI | MR
[95] Perez A., Pranzetti D., “On the regularization of the constraint algebra of quantum gravity in 2+1 dimensions with a nonvanishing cosmological constant”, Classical Quantum Gravity, 27 (2010), 145009, 20 pp. ; arXiv: 1001.3292 | DOI | MR | Zbl
[96] Ponzano G., Regge T., “Semi-classical limit of Racah coefficients”, Spectroscopic and Group Theoretical Methods in Physics, ed. F. Bloch, North-Holland, Amsterdam, 1968, 1–58
[97] Roberts J., “Classical $6j$-symbols and the tetrahedron”, Geom. Topol., 3 (1999), 21–66 ; arXiv: math-ph/9812013 | DOI | MR | Zbl
[98] Rovelli C., “A new look at loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 114005, 24 pp. ; arXiv: 1004.1780 | DOI | MR | Zbl
[99] Rovelli C., Discretizing parametrized systems: the magic of Ditt-invariance, arXiv: 1107.2310
[100] Rovelli C., Speziale S., “On the geometry of loop quantum gravity on a graph”, Phys. Rev. D, 82 (2010), 044018, 6 pp. ; arXiv: 1005.2927 | DOI | MR
[101] Rozansky L., “A large $k$ asymptotics of Witten's invariant of Seifert manifolds”, Comm. Math. Phys., 171 (1995), 279–322 ; arXiv: hep-th/9303099 | DOI | MR | Zbl
[102] Sasakura N., “Tensor model for gravity and orientability of manifold”, Modern Phys. Lett. A, 6 (1991), 2613–2623 | DOI | MR | Zbl
[103] Schulten K., Gordon R.G., “Semiclassical approximations to $3j$- and $6j$-coefficients for quantum-mechanical coupling of angular momenta”, J. Math. Phys., 16 (1975), 1971–1988 | DOI | MR
[104] Smolin L., The classical limit and the form of the Hamiltonian constraint in nonperturbative quantum general relativity, arXiv: gr-qc/9609034
[105] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 ; arXiv: gr-qc/0110034 | DOI | MR | Zbl
[106] Thiemann T., “Quantum spin dynamics (QSD)”, Classical Quantum Gravity, 15 (1998), 839–873 ; arXiv: gr-qc/9606089 | DOI | MR | Zbl
[107] Thiemann T., “Quantum spin dynamics (QSD) II. The kernel of the Wheeler–DeWitt constraint operator”, Classical Quantum Gravity, 15 (1998), 875–905 ; arXiv: gr-qc/9606090 | DOI | MR | Zbl
[108] Thiemann T., “Quantum spin dynamics (QSD). III. Quantum constraint algebra and physical scalar product in quantum general relativity”, Classical Quantum Gravity, 15 (1998), 1207–1247 ; arXiv: gr-qc/9705017 | DOI | MR | Zbl
[109] Thiemann T., “Quantum spin dynamics (QSD). IV. $2+1$ Euclidean quantum gravity as a model to test 3+1 Lorentzian quantum gravity”, Classical Quantum Gravity, 15 (1998), 1249–1280 ; arXiv: gr-qc/9705018 | DOI | MR | Zbl
[110] Thiemann T., “Quantum spin dynamics. VIII. The master constraint”, Classical Quantum Gravity, 23 (2006), 2249–2265 ; arXiv: gr-qc/0510011 | DOI | MR | Zbl
[111] Thiemann T., “The Phoenix Project: master constraint programme for loop quantum gravity”, Classical Quantum Gravity, 23 (2006), 2211–2247 ; arXiv: gr-qc/0305080 | DOI | MR | Zbl
[112] Varshalovich D.A., Moskalev A.N., Khersonskii V.K., Quantum theory of angular momentum, World Scientific Publishing Co. Inc., Teaneck, NJ, 1988 | MR
[113] Witten E., “$2+1$ dimensional gravity as an exactly soluble system”, Nuclear Phys. B, 311 (1988), 46–78 | DOI | MR | Zbl
[114] Witten E., “On quantum gauge theories in two dimensions”, Comm. Math. Phys., 141 (1991), 153–209 | DOI | MR | Zbl
[115] Witten E., “Topology-changing amplitudes in $(2+1)$-dimensional gravity”, Nuclear Phys. B, 323 (1989), 113–140 | DOI | MR
[116] Yu L., Asymptotic limits of the Wigner $15j$-symbol with small quantum numbers, arXiv: 1104.3641
[117] Yu L., “Semiclassical analysis of the Wigner $12j$ symbol with one small angular momentum”, Phys. Rev. A, 84 (2011), 022101, 13 pp. ; arXiv: 1104.3275 | DOI
[118] Yu L., Littlejohn R.G., “Semiclassical analysis of the Wigner $9j$ symbol with small and large angular momenta”, Phys. Rev. A, 83 (2011), 052114, 16 pp. ; arXiv: 1104.1499 | DOI
[119] Yutsis A.P., Levinson I.B., Vanagas V.V., Mathematical apparatus of the theory of angular momentum, Israel Program for Scientific Translations, Jerusalem, 1962 | MR | Zbl