@article{SIGMA_2012_8_a79,
author = {Christiane Quesne},
title = {Novel enlarged shape invariance property and exactly solvable rational extensions of the {Rosen{\textendash}Morse} {II} and {Eckart} potentials},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a79/}
}
TY - JOUR AU - Christiane Quesne TI - Novel enlarged shape invariance property and exactly solvable rational extensions of the Rosen–Morse II and Eckart potentials JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a79/ LA - en ID - SIGMA_2012_8_a79 ER -
%0 Journal Article %A Christiane Quesne %T Novel enlarged shape invariance property and exactly solvable rational extensions of the Rosen–Morse II and Eckart potentials %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a79/ %G en %F SIGMA_2012_8_a79
Christiane Quesne. Novel enlarged shape invariance property and exactly solvable rational extensions of the Rosen–Morse II and Eckart potentials. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a79/
[1] Adler V.É., “On a modification of Crum's method”, Theoret. and Math. Phys., 101 (1994), 1381–1386 | DOI | MR | Zbl
[2] Andrianov A.A., Ioffe M.V., Nishnianidze D.N., “Polynomial SUSY in quantum mechanics and second derivative Darboux transformations”, Phys. Lett. A, 201 (1995), 103–110 ; arXiv: hep-th/9404120 | DOI | MR | Zbl
[3] Aoyama H., Sato M., Tanaka T., “$\mathcal N$-fold supersymmetry in quantum mechanics: general formalism”, Nuclear Phys. B, 619 (2001), 105–127 ; arXiv: quant-ph/0106037 | DOI | MR | Zbl
[4] Bagchi B., Quesne C., Roychoudhury R., “Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of $\mathcal{PT}$ symmetry”, Pramana J. Phys., 73 (2009), 337–347 ; arXiv: 0812.1488 | DOI
[5] Bagrov V.G., Samsonov B.F., “Darboux transformation, factorization, and supersymmetry in one-dimensional quantum mechanics”, Theoret. and Math. Phys., 104 (1995), 1051–1060 | DOI | MR | Zbl
[6] Berger M.S., Ussembayev N.S., “Isospectral potentials from modified factorization”, Phys. Rev. A, 82 (2010), 022121, 7 pp. ; arXiv: 1008.1528 | DOI | MR
[7] Bougie J., Gangopadhyaya A., Mallow J.V., “Generation of a complete set of additive shape-invariant potentials from an Euler equation”, Phys. Rev. Lett., 105 (2010), 210402, 4 pp. ; arXiv: 1008.2035 | DOI | MR | Zbl
[8] Bougie J., Gangopadhyaya A., Mallow J.V., “Method for generating additive shape-invariant potentials from an Euler equation”, J. Phys. A: Math. Theor., 44 (2011), 275307, 19 pp. ; arXiv: 1103.1169 | DOI | MR | Zbl
[9] Cariñena J.F., Perelomov A.M., Rañada M.F., Santander M., “A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator”, J. Phys. A: Math. Theor., 41 (2008), 085301, 10 pp. ; arXiv: 0711.4899 | DOI | MR | Zbl
[10] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385 ; arXiv: hep-th/9405029 | DOI | MR
[11] Crum M.M., “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127 ; arXiv: physics/9908019 | DOI | MR
[12] Dutta D., Roy P., “Conditionally exactly solvable potentials and exceptional orthogonal polynomials”, J. Math. Phys., 51 (2010), 042101, 9 pp. | DOI | MR
[13] Dutta D., Roy P., “Generalized factorization and isospectral potentials”, Phys. Rev. A, 83 (2011), 054102, 4 pp. | DOI
[14] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, Mc-Graw Hill, New York, 1953
[15] Fellows J.M., Smith R.A., “Factorization solution of a family of quantum nonlinear oscillators”, J. Phys. A: Math. Theor., 42 (2009), 335303, 13 pp. | DOI | MR | Zbl
[16] Fernández C. D.J., Fernández-García N., “Higher-order supersymmetric quantum mechanics”, AIP Conf. Proc., 744 (2005), 236–273 ; arXiv: quant-ph/0502098 | DOI | MR
[17] Gómez-Ullate D., Kamran N., Milson R., A conjecture on exceptional orthogonal polynomials, arXiv: 1203.6857
[18] Gómez-Ullate D., Kamran N., Milson R., “An extended class of orthogonal polynomials defined by a Sturm–Liouville problem”, J. Math. Anal. Appl., 359 (2009), 352–367 ; arXiv: 0807.3939 | DOI | MR
[19] Gómez-Ullate D., Kamran N., Milson R., “An extension of Bochner's problem: exceptional invariant subspaces”, J. Approx. Theory, 162 (2010), 987–1006 ; arXiv: 0805.3376 | DOI | MR
[20] Gómez-Ullate D., Kamran N., Milson R., “Exceptional orthogonal polynomials and the Darboux transformation”, J. Phys. A: Math. Theor., 43 (2010), 434016, 16 pp. ; arXiv: 1002.2666 | DOI | MR
[21] Gómez-Ullate D., Kamran N., Milson R., “On orthogonal polynomials spanning a non-standard flag”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemp. Math., 563, Amer. Math. Soc., Providence, RI, 2012, 51–72 ; arXiv: 1101.5584 | DOI | MR
[22] Gómez-Ullate D., Kamran N., Milson R., “Supersymmetry and algebraic Darboux transformations”, J. Phys. A: Math. Gen., 37 (2004), 10065–10078 ; arXiv: nlin.SI/0402052 | DOI | MR
[23] Gómez-Ullate D., Kamran N., Milson R., “The Darboux transformation and algebraic deformations of shape-invariant potentials”, J. Phys. A: Math. Gen., 37 (2004), 1789–1804 ; arXiv: quant-ph/0308062 | DOI | MR
[24] Gómez-Ullate D., Kamran N., Milson R., “Two-step Darboux transformations and exceptional Laguerre polynomials”, J. Math. Anal. Appl., 387 (2012), 410–418 ; arXiv: 1103.5724 | DOI | MR
[25] Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, Academic Press, New York, 1980 | Zbl
[26] Grandati Y., “Multistep DBT and regular rational extensions of the isotonic oscillator”, Ann. Physics, 327 (2012), 2411–2431 ; arXiv: 1108.4503 | DOI | Zbl
[27] Grandati Y., New rational extensions of solvable potentials with finite bound state spectrum, arXiv: 1203.4149
[28] Grandati Y., “Solvable rational extensions of the isotonic oscillator”, Ann. Physics, 326 (2011), 2074–2090 ; arXiv: 1101.0055 | DOI | MR | Zbl
[29] Grandati Y., “Solvable rational extensions of the Morse and Kepler–Coulomb potentials”, J. Math. Phys., 52 (2011), 103505, 12 pp. ; arXiv: 1103.5023 | DOI | MR
[30] Ho C.-L., “Prepotential approach to solvable rational extensions of harmonic oscillator and Morse potentials”, J. Math. Phys., 52 (2011), 122107, 8 pp. ; arXiv: 1105.3670 | DOI | MR
[31] Ho C.-L., “Prepotential approach to solvable rational potentials and exceptional orthogonal polynomials”, Progr. Theoret. Phys., 126 (2011), 185–201 ; arXiv: 1104.3511 | DOI | Zbl
[32] Ho C.-L., Odake S., Sasaki R., “Properties of the exceptional $(X_\ell)$ Laguerre and Jacobi polynomials”, SIGMA, 7 (2011), 107, 24 pp. ; arXiv: 0912.5447 | DOI | MR | Zbl
[33] Krein M.G., “On a continual analogue of a Christoffel formula from the theory of orthogonal polynomials”, Dokl. Acad. Nauk SSSR, 113 (1957), 970–973 | MR | Zbl
[34] Odake S., Sasaki R., “Another set of infinitely many exceptional $(X_\ell)$ Laguerre polynomials”, Phys. Lett. B, 684 (2010), 173–176 ; arXiv: 0911.3442 | DOI | MR
[35] Odake S., Sasaki R., “Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials”, Phys. Lett. B, 702 (2011), 164–170 ; arXiv: 1105.0508 | DOI | MR
[36] Odake S., Sasaki R., “Infinitely many shape-invariant potentials and cubic identities of the Laguerre and Jacobi polynomials”, J. Math. Phys., 51 (2010), 053513, 9 pp. ; arXiv: 0911.1585 | DOI | MR
[37] Odake S., Sasaki R., “Infinitely many shape invariant potentials and new orthogonal polynomials”, Phys. Lett. B, 679 (2009), 414–417 ; arXiv: 0906.0142 | DOI | MR
[38] Quesne C., “Exceptional orthogonal polynomials and new exactly solvable potentials in quantum mechanics”, J. Phys. Conf. Ser., 380 (2012), 012016, 13 pp. ; arXiv: 1111.6467 | DOI
[39] Quesne C., “Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry”, J. Phys. A: Math. Theor., 41 (2008), 392001, 6 pp. ; arXiv: 0807.4087 | DOI | MR | Zbl
[40] Quesne C., “Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials”, Modern Phys. Lett. A, 26 (2011), 1843–1852 ; arXiv: 1106.1990 | DOI | MR
[41] Quesne C., “Rationally-extended radial oscillators and Laguerre exceptional orthogonal polynomials in $k$th-order SUSYQM”, Internat. J. Modern Phys. A, 26 (2011), 5337–5347 ; arXiv: 1110.3958 | DOI | MR | Zbl
[42] Quesne C., “Revisiting (quasi)-exactly solvable rational extensions of the Morse potential”, Internat. J. Modern Phys. A, 27 (2012), 1250073, 18 pp. ; arXiv: 1203.1812 | DOI | MR | Zbl
[43] Quesne C., “Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics”, SIGMA, 5 (2009), 084, 24 pp. ; arXiv: 0906.2331 | DOI | MR | Zbl
[44] Ramos A., “On the new translational shape-invariant potentials”, J. Phys. A: Math. Theor., 44 (2011), 342001, 9 pp. ; arXiv: 1106.3732 | DOI | MR | Zbl
[45] Sasaki R., Takemura K., Global solutions of certain second order differential equations with a high degree of apparent singularity, arXiv: 1207.5302
[46] Sasaki R., Tsujimoto S., Zhedanov A., “Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux–Crum transformations”, J. Phys. A: Math. Theor., 43 (2010), 315204, 20 pp. ; arXiv: 1004.4711 | DOI | MR | Zbl
[47] Sukumar C.V., “Supersymmetric quantum mechanics of one-dimensional systems”, J. Phys. A: Math. Gen., 18 (1985), 2917–2936 | DOI | MR
[48] Szegö G., Orthogonal polynomials, Amer. Math. Soc., Providence, RI, 1939