Rational Calogero–Moser model: explicit form and $r$-matrix of the second Poisson structure
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compute the full expression of the second Poisson bracket structure for $N=2$ and $N=3$ site rational classical Calogero–Moser model. We propose an $r$-matrix formulation for $N=2$. It is identified with the classical limit of the second dynamical boundary algebra previously built by the authors.
Keywords: classical integrable systems; hierarchy of Poisson structures; dynamical reflection equation.
@article{SIGMA_2012_8_a78,
     author = {Jean Avan and Eric Ragoucy},
     title = {Rational {Calogero{\textendash}Moser} model: explicit form and $r$-matrix of the second {Poisson} structure},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a78/}
}
TY  - JOUR
AU  - Jean Avan
AU  - Eric Ragoucy
TI  - Rational Calogero–Moser model: explicit form and $r$-matrix of the second Poisson structure
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a78/
LA  - en
ID  - SIGMA_2012_8_a78
ER  - 
%0 Journal Article
%A Jean Avan
%A Eric Ragoucy
%T Rational Calogero–Moser model: explicit form and $r$-matrix of the second Poisson structure
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a78/
%G en
%F SIGMA_2012_8_a78
Jean Avan; Eric Ragoucy. Rational Calogero–Moser model: explicit form and $r$-matrix of the second Poisson structure. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a78/

[1] Aniceto I., Avan J., Jevicki A., “Poisson structures of Calogero–Moser and Ruijsenaars–Schneider models”, J. Phys. A: Math. Gen., 43 (2010), 185201, 14 pp. ; arXiv: 0912.3468 | DOI | MR | Zbl

[2] Arutyunov G.E., Chekhov L.O., Frolov S.A., “$R$-matrix quantization of the elliptic Ruijsenaars–Schneider model”, Comm. Math. Phys., 192 (1998), 405–432 ; arXiv: q-alg/9612032 | DOI | MR | Zbl

[3] Arutyunov G.E., Frolov S.A., “Quantum dynamical $R$-matrices and quantum Frobenius group”, Comm. Math. Phys., 191 (1998), 15–29 ; arXiv: q-alg/9610009 | DOI | MR | Zbl

[4] Avan J., Babelon O., Talon M., “Construction of the classical $R$-matrices for the Toda and Calogero models”, St. Petersburg Math. J., 6 (1994), 255–274 ; arXiv: hep-th/9606102 | MR | Zbl

[5] Avan J., Billaud B., Rollet G., “Classification of non-affine non-Hecke dynamical $R$-matrices”, SIGMA, 8 (2012), 064, 45 pp. ; arXiv: 1204.2746 | DOI

[6] Avan J., Ragoucy E., “A new dynamical reflection algebra and related quantum integrable systems”, Lett. Math. Phys., 101 (2012), 85–101 ; arXiv: 1106.3264 | DOI | MR

[7] Avan J., Talon M., “Classical $R$-matrix structure for the Calogero model”, Phys. Lett. B, 303 (1993), 33–37 ; arXiv: hep-th/9210128 | DOI | MR

[8] Babelon O., Bernard D., Talon M., Introduction to classical integrable systems, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[9] Babelon O., Viallet C.M., “Hamiltonian structures and Lax equations”, Phys. Lett. B, 237 (1990), 411–416 | DOI | MR

[10] Balog J., Da̧browski L., Fehér L., “Classical $r$-matrix and exchange algebra in WZNW and Toda theories”, Phys. Lett. B, 244 (1990), 227–234 | DOI | MR

[11] Bartocci C., Falqui G., Mencattini I., Ortenzi G., Pedroni M., “On the geometric origin of the bi-Hamiltonian structure of the Calogero–Moser system”, Int. Math. Res. Not., 2010:2 (2010), 279–296 ; arXiv: 0902.0953 | DOI | MR | Zbl

[12] Braden H.W., Suzuki T., “$R$-matrices for elliptic Calogero–Moser models”, Lett. Math. Phys., 30 (1994), 147–158 ; arXiv: hep-th/9312031 | DOI | MR | Zbl

[13] Calogero F., “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento, 13 (1975), 411–416 | DOI | MR

[14] Calogero F., “On a functional equation connected with integrable many-body problems”, Lett. Nuovo Cimento, 16 (1976), 77–80 | DOI | MR

[15] Fehér L., Pusztai B.G., “A class of Calogero type reductions of free motion on a simple Lie group”, Lett. Math. Phys., 79 (2007), 263–277 ; arXiv: math-ph/0609085 | DOI | MR | Zbl

[16] Felder G., “Elliptic quantum groups”, XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press, Cambridge, MA, 1995, 211–218 ; arXiv: hep-th/9412207 | MR | Zbl

[17] Freidel L., Maillet J.M., “Quadratic algebras and integrable systems”, Phys. Lett. B, 262 (1991), 278–284 | DOI | MR

[18] Gervais J.L., Neveu A., “Novel triangle relation and absence of tachyons in Liouville string field theory”, Nuclear Phys. B, 238 (1984), 125–141 | DOI | MR

[19] Lax P.D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[20] Li L.C., Parmentier S., “Nonlinear Poisson structures and $r$-matrices”, Comm. Math. Phys., 125 (1989), 545–563 | DOI | MR | Zbl

[21] Magri F., Casati P., Falqui G., Pedroni M., “Eight lectures on integrable systems, in Integrability of Nonlinear Systems” (Pondicherry, 1996), Lecture Notes in Phys., 495, Springer, Berlin, 1997, 256–296 | DOI | MR | Zbl

[22] Maillet J.M., “New integrable canonical structures in two-dimensional models”, Nuclear Phys. B, 269 (1986), 54–76 | DOI | MR

[23] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl

[24] Nagy Z., Avan J., Rollet G., “Construction of dynamical quadratic algebras”, Lett. Math. Phys., 67 (2004), 1–11 ; arXiv: math.QA/0307026 | DOI | MR | Zbl

[25] Oevel W., Ragnisco O., “$R$-matrices and higher Poisson brackets for integrable systems”, Phys. A, 161 (1989), 181–220 | DOI | MR | Zbl

[26] Olshanetsky M.A., Perelomov A.M., “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71 (1981), 313–400 | DOI | MR

[27] Pusztai B.G., On the $r$-matrix structure of the hyperbolic $BC_n$ model, arXiv: 1205.1029

[28] Ruijsenaars S.N.M., Schneider H., “A new class of integrable systems and its relation to solitons”, Ann. Physics, 170 (1986), 370–405 | DOI | MR | Zbl

[29] Semenov-Tjan-Shanskii M.A., “What is a classical $r$-matrix?”, Funct. Anal. Appl., 17 (1983), 259–272 | DOI

[30] Sklyanin E.K., “Some algebraic structures connected with the Yang–Baxter equation”, Funct. Anal. Appl., 16 (1982), 263–270 | DOI | MR

[31] Suris Yu.B., “Why is the Ruijsenaars–Schneider hierarchy governed by the same $R$-operator as the Calogero–Moser one?”, Phys. Lett. A, 225 (1997), 253–262 ; arXiv: hep-th/9602160 | DOI | MR | Zbl

[32] Xu P., “Quantum dynamical Yang–Baxter equation over a nonabelian base”, Comm. Math. Phys., 226 (2002), 475–495 ; arXiv: math.QA/0104071 | DOI | MR | Zbl