@article{SIGMA_2012_8_a77,
author = {Sergey I. Agafonov},
title = {Frobenius 3-folds via singular flat 3-webs},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a77/}
}
Sergey I. Agafonov. Frobenius 3-folds via singular flat 3-webs. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a77/
[1] Agafonov S.I., “Flat 3-webs via semi-simple Frobenius 3-manifolds”, J. Geom. Phys., 62 (2012), 361–367 ; arXiv: 1108.1997 | DOI | MR | Zbl
[2] Agafonov S.I., “Linearly degenerate reducible systems of hydrodynamic type”, J. Math. Anal. Appl., 222 (1998), 15–37 | DOI | MR | Zbl
[3] Agafonov S.I., Local classification of singular hexagonal 3-webs with holomorphic Chern connection form and infinitesimal symmetries, arXiv: 1105.1402
[4] Agafonov S.I., “On implicit ODEs with hexagonal web of solutions”, J. Geom. Anal., 19 (2009), 481–508 ; arXiv: 0808.0348 | DOI | MR | Zbl
[5] Akivis M.A., Goldberg V.V., “Differential geometry of webs”, Handbook of Differential Geometry, v. I, North-Holland, Amsterdam, 2000, 1–152 | DOI | MR | Zbl
[6] Blaschke W., Einführung in die Geometrie der Waben, Birkhäuser Verlag, Basel und Stuttgart, 1955 | MR | Zbl
[7] Cartan E., “Les sous-groupes des groupes continus de transformations”, Ann. Sci. École Norm. Sup. (3), 25 (1908), 57–194 | MR | Zbl
[8] Dubrovin B., “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 ; arXiv: hep-th/9407018 | DOI | MR | Zbl
[9] Dubrovin B., “Integrable systems in topological field theory”, Nuclear Phys. B, 379 (1992), 627–689 | DOI | MR
[10] Grifone J., Salem E. (Eds.), Web theory and related topics, World Scientific Publishing Co. Inc., River Edge, NJ, 2001 | DOI | MR | Zbl
[11] Hénaut A., “On planar web geometry through abelian relations and connections”, Ann. of Math. (2), 159 (2004), 425–445 | DOI | MR
[12] Manin Yu.I.,, Frobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society Colloquium Publications, 47, American Mathematical Society, Providence, RI, 1999 | MR | Zbl
[13] Mokhov O.I., Ferapontov E.V., “Associativity equations of two-dimensional topological field theory as integrable Hamiltonian nondiagonalizable systems of hydrodynamic type”, Funct. Anal. Appl., 30 (1996), 195––203 ; arXiv: hep-th/9505180 | DOI | MR | Zbl