Definite integrals using orthogonality and integral transforms
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain definite integrals for products of associated Legendre functions with Bessel functions, associated Legendre functions, and Chebyshev polynomials of the first kind using orthogonality and integral transforms.
Keywords: definite integrals; associated Legendre functions; Bessel functions; Chebyshev polynomials of the first kind.
@article{SIGMA_2012_8_a76,
     author = {Howard S. Cohl and Hans Volkmer},
     title = {Definite integrals using orthogonality and integral transforms},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a76/}
}
TY  - JOUR
AU  - Howard S. Cohl
AU  - Hans Volkmer
TI  - Definite integrals using orthogonality and integral transforms
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a76/
LA  - en
ID  - SIGMA_2012_8_a76
ER  - 
%0 Journal Article
%A Howard S. Cohl
%A Hans Volkmer
%T Definite integrals using orthogonality and integral transforms
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a76/
%G en
%F SIGMA_2012_8_a76
Howard S. Cohl; Hans Volkmer. Definite integrals using orthogonality and integral transforms. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a76/

[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, DC, 1964 | MR

[2] Askey R., Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975 | MR | Zbl

[3] Cohl H.S., Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems, arXiv: 1209.6047

[4] Cohl H.S., “Erratum: Developments in determining the gravitational potential using toroidal functions”, Astronom. Nachr., 333 (2012), 784–785 | DOI

[5] Cohl H.S., Dominici D.E., “Generalized Heine's identity for complex Fourier series of binomials”, Proc. R. Soc. Lond. Ser. A, 467 (2011), 333–345 ; arXiv: 0912.0126 | DOI | MR | Zbl

[6] Cohl H.S., Tohline J.E., Rau A.R.P., Srivastava H.M., “Developments in determining the gravitational potential using toroidal functions”, Astronom. Nachr., 321 (2000), 363–372 | 3.0.CO;2-X class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[7] Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, seventh ed., Elsevier/Academic Press, Amsterdam, 2007 | MR | Zbl

[8] Hardy G.H., “Further researches in the theory of divergent series and integrals”, Trans. Cambridge Philos. Soc., 21 (1908), 1–48

[9] MacRobert T.M., Spherical harmonics. An elementary treatise on harmonic functions with applications, 2nd ed., Methuen Co. Ltd., London, 1947 | MR

[10] Magnus W., Oberhettinger F., Soni R.P., Formulas and theorems for the special functions of mathematical physics, Die Grundlehren der mathematischen Wissenschaften, 52, 3rd ed., Springer-Verlag, New York, 1966 | MR | Zbl

[11] Morse P.M., Feshbach H., Methods of theoretical physics, v. 1, 2, McGraw-Hill Book Co. Inc., New York, 1953 | MR | Zbl

[12] Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Eds.), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[13] Prudnikov A.P., Brychkov Y.A., Marichev O.I., Integrals and series, v. 3, More special functions, Gordon and Breach Science Publishers, New York, 1990 | MR | Zbl

[14] Schäfke F.W., Einführung in die Theorie der speziellen Funktionen der mathematischen Physik, Die Grundlehren der mathematischen Wissenschaften, 118, Springer-Verlag, Berlin, 1963 | MR

[15] Watson G.N., A treatise on the theory of Bessel functions, Cambridge Mathematical Library, 2nd ed., Cambridge University Press, Cambridge, 1944 | MR | Zbl