@article{SIGMA_2012_8_a73,
author = {Ricardo M\'endez-Fragoso and Eugenio Ley-Koo},
title = {Ladder operators for {Lam\'e} spheroconal harmonic polynomials},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a73/}
}
Ricardo Méndez-Fragoso; Eugenio Ley-Koo. Ladder operators for Lamé spheroconal harmonic polynomials. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a73/
[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions, Dover, New York, 1965
[2] Aquilanti V., Caligiana A., Cavalli S., “Hydrogenic elliptic orbitals, Coulomb Sturmian sets, and recoupling coefficients among alternative bases”, Int. J. Quantum Chem., 92 (2003), 99–117 | DOI
[3] Aquilanti V., Caligiana A., Cavalli S., Coletti C., “Hydrogenic orbitals in momentum space and hyperspherical harmonics: elliptic Sturmian basis sets”, Int. J. Quantum Chem., 92 (2003), 212–228 | DOI
[4] Aquilanti V., Tonzani S., “Three-body problem in quantum mechanics: hyperspherical elliptic coordinates and harmonic basis sets”, J. Chem. Phys., 120 (2004), 4066–4073 | DOI
[5] Grosche C., Karayan K.H., Pogosyan G.S., Sissakian A.N., “Quantum motion on the three-dimensional sphere: the ellipso-cylindrical bases”, J. Phys. A: Math. Gen., 30 (1997), 1629–1657 | DOI | MR | Zbl
[6] Kramers H.A., Ittmann G.P., “Zur Quantelung des asymmetrischen Kreisels”, Z. Phys., 53 (1929), 553–565 | DOI | Zbl
[7] Kronig R. de L., Rabi I.I., “The symmetrical top in the undulatory mechanics”, Phys. Rev., 29 (1927), 262–269 | DOI | Zbl
[8] Kroto H.W., Molecular rotation spectra, John Wiley Sons, London, 1975
[9] Ley-Koo E., Méndez-Fragoso R., “Properties of the spectra of asymmetric molecules: matrix evaluation in bases of spherical harmonics and common generating function”, Rev. Mexicana Fís., 54 (2008), 69–77 | MR
[10] Ley-Koo E., Méndez-Fragoso R., “Rotational states of asymmetric molecules revisited: matrix evaluation and generating function of Lamé functions”, Rev. Mexicana Fís., 54 (2008), 162–172
[11] Ley-Koo E., Sun G.H., “Ladder operators for quantum systems confined by dihedral angles”, SIGMA, 8 (2012), 060, 15 pp. ; arXiv: 1209.2497 | DOI
[12] Liu Q.H., Xun D.M., Shan L., “Raising and lowering operators for orbital angular momentum quantum numbers”, Internat. J. Theoret. Phys., 49 (2010), 2164–2171 | DOI | MR | Zbl
[13] Lukach I., “A complete set of quantum-mechanical observables on a two-dimensional sphere”, Theoret. and Math. Phys., 14 (1973), 271–281 | DOI
[14] Lukach I., Smorodinskiĭ Ya.A., “Separation of variables in a spheroconical coordinate system and the Schrödinger equation for a case of noncentral forces”, Theoret. and Math. Phys., 14 (1973), 125–131 | DOI
[15] Lukach I., Smorodinskiĭ Ya.A., “The wave functions of an asymmetrical top”, Soviet Phys. JETP, 30 (1970), 728–730 | MR
[16] Lütgemeier F., “Zur Quantentheorie des drei- und mehratomigen Moleküls”, Z. Phys., 38 (1926), 251–263 | DOI
[17] Méndez-Fragoso R., Ley-Koo E., “Lamé spheroconal harmonics in atoms and molecules”, Int. J. Quantum Chem., 110 (2010), 2765–2774 | DOI
[18] Méndez-Fragoso R., Ley-Koo E., “Rotations of asymmetric molecules and the hydrogen atom in free and confined congurations”, Adv. Quantum Chem., 62 (2011), 137–213 | DOI
[19] Méndez-Fragoso R., Ley-Koo E., “The hydrogen atom in a semi-infinite space with an elliptical cone boundary”, Int. J. Quantum Chem., 111 (2011), 2882–2897 | DOI
[20] Morse P.M., Feshbach H., Methods of theoretical physics, v. 1, 2, McGraw-Hill Book Co. Inc., New York, 1953 | MR | Zbl
[21] Niven W.D., “On ellipsoidal harmonics”, Philos. Trans. R. Soc. Lond. Ser. A, 182 (1891), 231–278 | DOI
[22] Odake S., Sasaki R., “Discrete quantum mechanics”, J. Phys. A: Math. Theor., 44 (2011), 353001, 47 pp. ; arXiv: 1104.0473 | DOI | MR | Zbl
[23] Odake S., Sasaki R., “Orthogonal polynomials from Hermitian matrices”, J. Math. Phys., 49 (2008), 053503, 43 pp. ; arXiv: 0712.4106 | DOI | MR | Zbl
[24] Patera J., Winternitz P., “A new basis for the representations of the rotation group. Lamé and Heun polynomials”, J. Math. Phys., 14 (1973), 1130–1139 | DOI | Zbl
[25] Patera J., Winternitz P., “On bases for irreducible representations of $O(3)$ suitable for systems with an arbitrary finite symmetry group”, J. Chem. Phys., 65 (1976), 2725–2731 | DOI | MR
[26] Piña E., “Algunas propiedades de los operadores de escalera”, Rev. Mexicana Fís., 41 (1995), 913–924 | MR
[27] Piña E., “Some properties of the spectra of asymmetric molecules”, J. Mol. Structure: THEOCHEM, 493 (1999), 159–170 | DOI
[28] Piña E., Jiménez-Lara L., “Properties of new coordinates for the general three-body problem”, Celestial Mech. Dynam. Astronom., 82 (2002), 1–18 | DOI | MR | Zbl
[29] Reiche F., Rademacher H., “Die Quantelung des symmetrischen Kreisels nach Schrödingers Undulationsmechanik”, Z. Phys., 39 (1926), 444–464 | DOI | Zbl
[30] Sun G.H., Dong S.H., “New type shift operators for circular well potential in two dimensions”, Phys. Lett. A, 374 (2010), 4112–4114 | DOI | MR | Zbl
[31] Sun G.H., Dong S.H., “New type shift operators for three-dimensional infinite well potential”, Modern Phys. Lett. A, 26 (2011), 351–358 | DOI | MR | Zbl
[32] Valdéz M.T., Piña E., “The rotational spectra of the most asymmetric molecules”, Rev. Mexicana Fís., 52 (2006), 220–229
[33] Volkmer H., “Lamé functions”, NIST Handbook of Mathematical Functions, eds. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, U.S. Dept. Commerce, Washington, DC, 2010, 683–695 | MR
[34] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[35] Witmer E.E., “The rotational energy of the polyatomic molecule as an explicit function of the quantum numbers”, Proc. Natl. Acad. Sci. USA, 12 (1926), 602–608 | DOI | Zbl