KZ characteristic variety as the zero set of classical Calogero–Moser Hamiltonians
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a relation between the characteristic variety of the KZ equations and the zero set of the classical Calogero–Moser Hamiltonians.
Keywords: Gaudin Hamiltonians; Calogero–Moser system; Wronski map.
@article{SIGMA_2012_8_a71,
     author = {Evgeny Mukhin and Vitaly Tarasov and Alexander Varchenko},
     title = {KZ characteristic variety as the zero set of classical {Calogero{\textendash}Moser} {Hamiltonians}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a71/}
}
TY  - JOUR
AU  - Evgeny Mukhin
AU  - Vitaly Tarasov
AU  - Alexander Varchenko
TI  - KZ characteristic variety as the zero set of classical Calogero–Moser Hamiltonians
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a71/
LA  - en
ID  - SIGMA_2012_8_a71
ER  - 
%0 Journal Article
%A Evgeny Mukhin
%A Vitaly Tarasov
%A Alexander Varchenko
%T KZ characteristic variety as the zero set of classical Calogero–Moser Hamiltonians
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a71/
%G en
%F SIGMA_2012_8_a71
Evgeny Mukhin; Vitaly Tarasov; Alexander Varchenko. KZ characteristic variety as the zero set of classical Calogero–Moser Hamiltonians. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a71/

[1] Babujian H.M., “Off-shell Bethe ansatz equations and $N$-point correlators in the $\mathrm{SU}(2)$ WZNW theory”, J. Phys. A: Math. Gen., 26 (1993), 6981–6990 | DOI | MR | Zbl

[2] Cherednik I., “Integration of quantum many-body problems by affine Knizhnik–Zamolodchikov equations”, Adv. Math., 106 (1994), 65–95 | DOI | MR | Zbl

[3] Cherednik I., “Lectures on Knizhnik–Zamolodchikov equations and Hecke algebras”, Quantum Many-Body Problems and Representation Theory, MSJ Mem., 1, Math. Soc. Japan, Tokyo, 1998, 1–96 | MR | Zbl

[4] Etingof P., Ginzburg V., “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism”, Invent. Math., 147 (2002), 243–348 ; arXiv: math.AG/0011114 | DOI | MR | Zbl

[5] Felder G., Markov Y., Tarasov V., Varchenko A., “Differential equations compatible with KZ equations”, Math. Phys. Anal. Geom., 3 (2000), 139–177 ; arXiv: math.QA/0001184 | DOI | MR | Zbl

[6] Felder G., Veselov A.P., “Polynomial solutions of the Knizhnik–Zamolodchikov equations and Schur–Weyl duality”, Int. Math. Res. Not., 2007 (2007), no. 15, 21 pp. ; arXiv: math.RT/0610383 | DOI | MR

[7] Felder G., Veselov A.P., “Shift operators for the quantum Calogero–Sutherland problems via Knizhnik–Zamolodchikov equation”, Comm. Math. Phys., 160 (1994), 259–273 | DOI | MR | Zbl

[8] Finkelberg M., Ginzburg V., “Calogero–Moser space and Kostka polynomials”, Adv. Math., 172 (2002), 137–150 ; arXiv: math.RT/0110190 | DOI | MR | Zbl

[9] Gaudin M., La fonction d'onde de Bethe, Collection du Commissariat à l'Énergie Atomique: Série Scientifique, Masson, Paris, 1983 | MR | Zbl

[10] Givental A., Kim B., “Quantum cohomology of flag manifolds and Toda lattices”, Comm. Math. Phys., 168 (1995), 609–641 ; arXiv: hep-th/9312096 | DOI | MR | Zbl

[11] Gordon I., “Baby Verma modules for rational Cherednik algebras”, Bull. London Math. Soc., 35 (2003), 321–336 ; arXiv: math.RT/0202301 | DOI | MR | Zbl

[12] Jurčo B., “Classical Yang–{B}axter equations and quantum integrable systems”, J. Math. Phys., 30 (1989), 1289–1293 | DOI | MR | Zbl

[13] Kazhdan D., Kostant B., Sternberg S., “Hamiltonian group actions and dynamical systems of Calogero type”, Comm. Pure Appl. Math., 31 (1978), 481–507 | DOI | MR | Zbl

[14] Matsuo A., “Integrable connections related to zonal spherical functions”, Invent. Math., 110 (1992), 95–121 | DOI | MR | Zbl

[15] Mukhin E., Tarasov V., Varchenko A., Bethe algebra, Calogero–Moser space and Cherednik algebra, arXiv: 0906.5185

[16] Mukhin E., Tarasov V., Varchenko A., “Gaudin Hamiltonians generate the Bethe algebra of a tensor power of the vector representation of $\mathfrak{gl}_N$”, St. Petersburg Math. J., 22 (2011), 463–472 ; arXiv: 0904.2131 | DOI | MR | Zbl

[17] Mukhin E., Tarasov V., Varchenko A., “Generating operator of XXX or Gaudin transfer matrices has quasi-exponential kernel”, SIGMA, 3 (2007), 060, 31 pp. ; arXiv: math.QA/0703893 | DOI | MR | Zbl

[18] Mukhin E., Tarasov V., Varchenko A., “Schubert calculus and representations of the general linear group”, J. Amer. Math. Soc., 22 (2009), 909–940 ; arXiv: 0711.4079 | DOI | MR | Zbl

[19] Mukhin E., Varchenko A., “Norm of a Bethe vector and the Hessian of the master function”, Compos. Math., 141 (2005), 1012–1028 ; arXiv: math.QA/0402349 | DOI | MR | Zbl

[20] Reshetikhin N., Varchenko A., “Quasiclassical asymptotics of solutions to the KZ equations”, Geometry, Topology, Physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, 293–322 ; arXiv: hep-th/9402126 | MR

[21] Schechtman V.V., Varchenko A.N., “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math., 106 (1991), 139–194 | DOI | MR | Zbl

[22] Schechtman V.V., Varchenko A.N., “Hypergeometric solutions of Knizhnik–Zamolodchikov equations”, Lett. Math. Phys., 20 (1990), 279–283 | DOI | MR | Zbl

[23] Wilson G., “Collisions of Calogero–Moser particles and an adelic Grassmannian”, Invent. Math., 133 (1998), 1–41 | DOI | MR | Zbl