Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in $1+1$ dimension and in $2+1$ dimension. Especially in the $(2+1)$-dimensional case, the corresponding system can be extended to $2\times 2$ matrix form. The factorization theorem of the Christoffel kernel for skew orthogonal polynomials in random matrix theory is presented as a by-product of these transformations.
Keywords: skew orthogonal polynomials, discrete integrable systems, discrete coupled KP equation, Pfaff lattice, Christoffel–Darboux kernel.
@article{SIGMA_2012_8_a7,
     author = {Hiroshi Miki and Hiroaki Goda and Satoshi Tsujimoto},
     title = {Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a7/}
}
TY  - JOUR
AU  - Hiroshi Miki
AU  - Hiroaki Goda
AU  - Satoshi Tsujimoto
TI  - Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a7/
LA  - en
ID  - SIGMA_2012_8_a7
ER  - 
%0 Journal Article
%A Hiroshi Miki
%A Hiroaki Goda
%A Satoshi Tsujimoto
%T Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a7/
%G en
%F SIGMA_2012_8_a7
Hiroshi Miki; Hiroaki Goda; Satoshi Tsujimoto. Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a7/

[1] Adler M., Forrester P.J., Nagao T., van Moerbeke P., “Classical skew orthogonal polynomials and random matrices”, J. Statist. Phys., 99 (2000), 141–170 ; arXiv: solv-int/9907001 | DOI | MR | Zbl

[2] Adler M., Horozov E., van Moerbeke P., “The Pfaff lattice and skew-orthogonal polynomials”, Int. Math. Res. Not., 1999 (1999), 569–588 ; arXiv: solv-int/9903005 | DOI | MR | Zbl

[3] Adler M., van Moerbeke P., “Toda versus {P}faff lattice and related polynomials”, Duke Math. J., 112 (2002), 1–58 | DOI | MR | Zbl

[4] Adler V.E., Postnikov V.V., “Linear problems and {B}äcklund transformations for the Hirota–Ohta system”, Phys. Lett. A, 375 (2011), 468–473 ; arXiv: 1007.4698 | DOI | MR

[5] Aptekarev A.I., Branquinho A., Marcellán F., “Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation”, J. Comput. Appl. Math., 78 (1997), 139–160 | DOI | MR | Zbl

[6] Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York, 1978. | MR | Zbl

[7] Dyson F.J., “A class of matrix ensembles”, J. Math. Phys., 13 (1972), 90–97 | DOI | MR | Zbl

[8] Geronimus J., “On polynomials orthogonal with regard to a given sequence of numbers”, Comm. Inst. Sci. Math. Méc. Univ. Kharkoff (4), 17 (1940), 3–18 | MR | Zbl

[9] Ghosh S., “Generalized Christoffel–Darboux formula for classical skew-orthogonal polynomials”, J. Phys. A: Math. Theor., 41 (2008), 435204, 29 pp. ; arXiv: 0711.4432 | DOI | MR | Zbl

[10] Gilson C.R., Nimmo J.J.C., Tsujimoto S., “Pfaffianization of the discrete KP equation”, J. Phys. A: Math. Gen., 34 (2001), 10569–10575 | DOI | MR | Zbl

[11] Hirota R., Ohta Y., “Hierarchies of coupled soliton equations. I”, J. Phys. Soc. Japan, 60 (1991), 798–809 | DOI | MR | Zbl

[12] Kakei S., “Orthogonal and symplectic matrix integrals and coupled KP hierarchy”, J. Phys. Soc. Japan, 68 (1999), 2875–2877 ; arXiv: solv-int/9909023 | DOI | MR

[13] Knuth D.E., “Overlapping Pfaffians”, Electron. J. Combin., 3:2 (1996), R5, 13 pp. ; arXiv: math.CO/9503234 | MR | Zbl

[14] Kodama Y., Pierce V.U., “Geometry of the Pfaff lattices”, Int. Math. Res. Not., 2007:23 (2007), Art. ID rnm120, 55 pp. ; arXiv: 0705.0510 | DOI | MR

[15] Kodama Y., Pierce V.U., “The Pfaff lattice on symplectic matrices”, J. Phys. A: Math. Theor., 43 (2010), 055206, 22 pp. ; arXiv: 0802.2288 | DOI | MR | Zbl

[16] Mehta M.L., Random matrices, Pure and Applied Mathematics (Amsterdam), 142, 3rd ed., Elsevier/Academic Press, Amsterdam, 2004 | MR | Zbl

[17] Minesaki Y., Nakamura Y., “The discrete relativistic Toda molecule equation and a Padé approximation algorithm”, Numer. Algorithms, 27 (2001), 219–235 | DOI | MR | Zbl

[18] Mukaihira A., “A $\tau$-function on the inhomogeneous lattice and the classical isotropic {H}eisenberg spin chain”, J. Phys. A: Math. Theor., 41 (2008), 475201, 23 pp. | DOI | MR | Zbl

[19] Mukaihira A., Tsujimoto S., “Determinant structure of non-autonomous Toda-type integrable systems”, J. Phys. A: Math. Gen., 39 (2006), 779–788 | DOI | MR | Zbl

[20] Ohta Y., “Special solutions of discrete integrable systems”, Discrete Integrable Systems, Lecture Notes in Phys., 644, Springer, Berlin, 2004, 57–83 | DOI | MR | Zbl

[21] Spiridonov V., Zhedanov A., “Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey–Wilson polynomials”, Methods Appl. Anal., 2 (1995), 369–398 | MR | Zbl

[22] Spiridonov V., Zhedanov A., “Spectral transformation chains and some new biorthogonal rational functions”, Comm. Math. Phys., 210 (2000), 49–83 | DOI | MR | Zbl

[23] Spiridonov V.P., Tsujimoto S., Zhedanov A.S., “Integrable discrete time chains for the Frobenius–Stickelberger–Thiele polynomials”, Comm. Math. Phys., 272 (2007), 139–165 | DOI | MR | Zbl

[24] Takasaki K., “Auxiliary linear problem, difference Fay identities and dispersionless limit of Pfaff–Toda hierarchy”, SIGMA, 5 (2009), 109, 34 pp. ; arXiv: 0908.3569 | DOI | MR | Zbl

[25] Tsujimoto S., Kondo K., “Molecule solutions to discrete equations and orthogonal polynomials”, Sūrikaisekikenkyūsho Kōkyūroku, 2000, no. 1170, 1–8 | MR | Zbl

[26] Tsujimoto S., Nakamura Y., Iwasaki M., “The discrete Lotka–Volterra system computes singular values”, Inverse Problems, 17 (2001), 53–58 | DOI | MR | Zbl

[27] van de Leur J., “Matrix integrals and the geometry of spinors”, J. Nonlinear Math. Phys., 8 (2001), 288–310 ; arXiv: solv-int/9909028 | DOI | MR | Zbl