@article{SIGMA_2012_8_a7,
author = {Hiroshi Miki and Hiroaki Goda and Satoshi Tsujimoto},
title = {Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a7/}
}
TY - JOUR AU - Hiroshi Miki AU - Hiroaki Goda AU - Satoshi Tsujimoto TI - Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a7/ LA - en ID - SIGMA_2012_8_a7 ER -
%0 Journal Article %A Hiroshi Miki %A Hiroaki Goda %A Satoshi Tsujimoto %T Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a7/ %G en %F SIGMA_2012_8_a7
Hiroshi Miki; Hiroaki Goda; Satoshi Tsujimoto. Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a7/
[1] Adler M., Forrester P.J., Nagao T., van Moerbeke P., “Classical skew orthogonal polynomials and random matrices”, J. Statist. Phys., 99 (2000), 141–170 ; arXiv: solv-int/9907001 | DOI | MR | Zbl
[2] Adler M., Horozov E., van Moerbeke P., “The Pfaff lattice and skew-orthogonal polynomials”, Int. Math. Res. Not., 1999 (1999), 569–588 ; arXiv: solv-int/9903005 | DOI | MR | Zbl
[3] Adler M., van Moerbeke P., “Toda versus {P}faff lattice and related polynomials”, Duke Math. J., 112 (2002), 1–58 | DOI | MR | Zbl
[4] Adler V.E., Postnikov V.V., “Linear problems and {B}äcklund transformations for the Hirota–Ohta system”, Phys. Lett. A, 375 (2011), 468–473 ; arXiv: 1007.4698 | DOI | MR
[5] Aptekarev A.I., Branquinho A., Marcellán F., “Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation”, J. Comput. Appl. Math., 78 (1997), 139–160 | DOI | MR | Zbl
[6] Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York, 1978. | MR | Zbl
[7] Dyson F.J., “A class of matrix ensembles”, J. Math. Phys., 13 (1972), 90–97 | DOI | MR | Zbl
[8] Geronimus J., “On polynomials orthogonal with regard to a given sequence of numbers”, Comm. Inst. Sci. Math. Méc. Univ. Kharkoff (4), 17 (1940), 3–18 | MR | Zbl
[9] Ghosh S., “Generalized Christoffel–Darboux formula for classical skew-orthogonal polynomials”, J. Phys. A: Math. Theor., 41 (2008), 435204, 29 pp. ; arXiv: 0711.4432 | DOI | MR | Zbl
[10] Gilson C.R., Nimmo J.J.C., Tsujimoto S., “Pfaffianization of the discrete KP equation”, J. Phys. A: Math. Gen., 34 (2001), 10569–10575 | DOI | MR | Zbl
[11] Hirota R., Ohta Y., “Hierarchies of coupled soliton equations. I”, J. Phys. Soc. Japan, 60 (1991), 798–809 | DOI | MR | Zbl
[12] Kakei S., “Orthogonal and symplectic matrix integrals and coupled KP hierarchy”, J. Phys. Soc. Japan, 68 (1999), 2875–2877 ; arXiv: solv-int/9909023 | DOI | MR
[13] Knuth D.E., “Overlapping Pfaffians”, Electron. J. Combin., 3:2 (1996), R5, 13 pp. ; arXiv: math.CO/9503234 | MR | Zbl
[14] Kodama Y., Pierce V.U., “Geometry of the Pfaff lattices”, Int. Math. Res. Not., 2007:23 (2007), Art. ID rnm120, 55 pp. ; arXiv: 0705.0510 | DOI | MR
[15] Kodama Y., Pierce V.U., “The Pfaff lattice on symplectic matrices”, J. Phys. A: Math. Theor., 43 (2010), 055206, 22 pp. ; arXiv: 0802.2288 | DOI | MR | Zbl
[16] Mehta M.L., Random matrices, Pure and Applied Mathematics (Amsterdam), 142, 3rd ed., Elsevier/Academic Press, Amsterdam, 2004 | MR | Zbl
[17] Minesaki Y., Nakamura Y., “The discrete relativistic Toda molecule equation and a Padé approximation algorithm”, Numer. Algorithms, 27 (2001), 219–235 | DOI | MR | Zbl
[18] Mukaihira A., “A $\tau$-function on the inhomogeneous lattice and the classical isotropic {H}eisenberg spin chain”, J. Phys. A: Math. Theor., 41 (2008), 475201, 23 pp. | DOI | MR | Zbl
[19] Mukaihira A., Tsujimoto S., “Determinant structure of non-autonomous Toda-type integrable systems”, J. Phys. A: Math. Gen., 39 (2006), 779–788 | DOI | MR | Zbl
[20] Ohta Y., “Special solutions of discrete integrable systems”, Discrete Integrable Systems, Lecture Notes in Phys., 644, Springer, Berlin, 2004, 57–83 | DOI | MR | Zbl
[21] Spiridonov V., Zhedanov A., “Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey–Wilson polynomials”, Methods Appl. Anal., 2 (1995), 369–398 | MR | Zbl
[22] Spiridonov V., Zhedanov A., “Spectral transformation chains and some new biorthogonal rational functions”, Comm. Math. Phys., 210 (2000), 49–83 | DOI | MR | Zbl
[23] Spiridonov V.P., Tsujimoto S., Zhedanov A.S., “Integrable discrete time chains for the Frobenius–Stickelberger–Thiele polynomials”, Comm. Math. Phys., 272 (2007), 139–165 | DOI | MR | Zbl
[24] Takasaki K., “Auxiliary linear problem, difference Fay identities and dispersionless limit of Pfaff–Toda hierarchy”, SIGMA, 5 (2009), 109, 34 pp. ; arXiv: 0908.3569 | DOI | MR | Zbl
[25] Tsujimoto S., Kondo K., “Molecule solutions to discrete equations and orthogonal polynomials”, Sūrikaisekikenkyūsho Kōkyūroku, 2000, no. 1170, 1–8 | MR | Zbl
[26] Tsujimoto S., Nakamura Y., Iwasaki M., “The discrete Lotka–Volterra system computes singular values”, Inverse Problems, 17 (2001), 53–58 | DOI | MR | Zbl
[27] van de Leur J., “Matrix integrals and the geometry of spinors”, J. Nonlinear Math. Phys., 8 (2001), 288–310 ; arXiv: solv-int/9909028 | DOI | MR | Zbl