@article{SIGMA_2012_8_a69,
author = {Claudia M. Chanu and Luca Degiovanni and Giovanni Rastelli},
title = {Superintegrable extensions of superintegrable systems},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a69/}
}
TY - JOUR AU - Claudia M. Chanu AU - Luca Degiovanni AU - Giovanni Rastelli TI - Superintegrable extensions of superintegrable systems JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a69/ LA - en ID - SIGMA_2012_8_a69 ER -
Claudia M. Chanu; Luca Degiovanni; Giovanni Rastelli. Superintegrable extensions of superintegrable systems. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a69/
[1] Chanu C., Degiovanni L., Rastelli G., “First integrals of extended Hamiltonians in $n+1$ dimensions generated by powers of an operator”, SIGMA, 7 (2011), 038, 12 pp. ; arXiv: 1101.5975 | DOI | MR | Zbl
[2] Chanu C., Degiovanni L., Rastelli G., “Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization”, J. Phys. Conf. Ser., 343 (2012), 012101, 15 pp. ; arXiv: 1111.0030 | DOI
[3] Chanu C., Degiovanni L., Rastelli G., “Superintegrable three-body systems on the line”, J. Math. Phys., 49 (2008), 112901, 10 pp. ; arXiv: 0802.1353 | DOI | MR | Zbl
[4] Jauch J.M., Hill E.L., “On the problem of degeneracy in quantum mechanics”, Phys. Rev., 57 (1940), 641–645 | DOI | MR | Zbl
[5] Kalnins E.G., Kress J.M., Pogosyan G.S., Miller Jr. W., “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720 ; arXiv: math-ph/0102006 | DOI | MR | Zbl
[6] Kalnins E.G., Kress J.M., Miller Jr. W., Talk given by J. Kress during the conference “Superintegrability, Exact Solvability, and Special Functions” (Cuernavaca, February 20–24, 2012)
[7] Kalnins E.G., Kress J.M., Miller Jr. W., “Tools for verifying classical and quantum superintegrability”, SIGMA, 6 (2010), 066, 23 pp. ; arXiv: 1006.0864 | DOI | MR | Zbl
[8] Maciejewski A.J., Przybylska M., Yoshida H., “Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces”, J. Phys. A: Math. Theor., 43 (2010), 382001, 15 pp. ; arXiv: 1004.3854 | DOI | MR | Zbl
[9] Rodríguez M.A., Tempesta P., Winternitz P., “Reduction of superintegrable systems: the anisotropic harmonic oscillator”, Phys. Rev. E, 78 (2008), 046608, 6 pp. ; arXiv: 0807.1047 | DOI | MR
[10] Tremblay F., Turbiner A.V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp. ; arXiv: 0904.0738 | DOI | MR | Zbl