Superintegrable extensions of superintegrable systems
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on $\mathbb E^2$ and $\mathbb S^2$ and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay–Turbiner–Winternitz and three-particle Calogero systems.
Keywords: superintegrable Hamiltonian systems; polynomial first integrals.
@article{SIGMA_2012_8_a69,
     author = {Claudia M. Chanu and Luca Degiovanni and Giovanni Rastelli},
     title = {Superintegrable extensions of superintegrable systems},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a69/}
}
TY  - JOUR
AU  - Claudia M. Chanu
AU  - Luca Degiovanni
AU  - Giovanni Rastelli
TI  - Superintegrable extensions of superintegrable systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a69/
LA  - en
ID  - SIGMA_2012_8_a69
ER  - 
%0 Journal Article
%A Claudia M. Chanu
%A Luca Degiovanni
%A Giovanni Rastelli
%T Superintegrable extensions of superintegrable systems
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a69/
%G en
%F SIGMA_2012_8_a69
Claudia M. Chanu; Luca Degiovanni; Giovanni Rastelli. Superintegrable extensions of superintegrable systems. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a69/

[1] Chanu C., Degiovanni L., Rastelli G., “First integrals of extended Hamiltonians in $n+1$ dimensions generated by powers of an operator”, SIGMA, 7 (2011), 038, 12 pp. ; arXiv: 1101.5975 | DOI | MR | Zbl

[2] Chanu C., Degiovanni L., Rastelli G., “Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization”, J. Phys. Conf. Ser., 343 (2012), 012101, 15 pp. ; arXiv: 1111.0030 | DOI

[3] Chanu C., Degiovanni L., Rastelli G., “Superintegrable three-body systems on the line”, J. Math. Phys., 49 (2008), 112901, 10 pp. ; arXiv: 0802.1353 | DOI | MR | Zbl

[4] Jauch J.M., Hill E.L., “On the problem of degeneracy in quantum mechanics”, Phys. Rev., 57 (1940), 641–645 | DOI | MR | Zbl

[5] Kalnins E.G., Kress J.M., Pogosyan G.S., Miller Jr. W., “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720 ; arXiv: math-ph/0102006 | DOI | MR | Zbl

[6] Kalnins E.G., Kress J.M., Miller Jr. W., Talk given by J. Kress during the conference “Superintegrability, Exact Solvability, and Special Functions” (Cuernavaca, February 20–24, 2012)

[7] Kalnins E.G., Kress J.M., Miller Jr. W., “Tools for verifying classical and quantum superintegrability”, SIGMA, 6 (2010), 066, 23 pp. ; arXiv: 1006.0864 | DOI | MR | Zbl

[8] Maciejewski A.J., Przybylska M., Yoshida H., “Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces”, J. Phys. A: Math. Theor., 43 (2010), 382001, 15 pp. ; arXiv: 1004.3854 | DOI | MR | Zbl

[9] Rodríguez M.A., Tempesta P., Winternitz P., “Reduction of superintegrable systems: the anisotropic harmonic oscillator”, Phys. Rev. E, 78 (2008), 046608, 6 pp. ; arXiv: 0807.1047 | DOI | MR

[10] Tremblay F., Turbiner A.V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp. ; arXiv: 0904.0738 | DOI | MR | Zbl