Complex SUSY transformations and the Painlevé IV equation
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we will explicitly work out the complex first-order SUSY transformation for the harmonic oscillator in order to obtain both real and complex new exactly-solvable potentials. Furthermore, we will show that this systems lead us to exact complex solutions of the Painlevé IV equation with complex parameters. We present some concrete examples of such solutions.
Keywords: supersymmetric quantum mechanics; Painlevé equations; differential equations; quantum harmonic oscillator; polynomial Heisenberg algebras.
@article{SIGMA_2012_8_a68,
     author = {David Berm\'udez},
     title = {Complex {SUSY} transformations and the {Painlev\'e} {IV} equation},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a68/}
}
TY  - JOUR
AU  - David Bermúdez
TI  - Complex SUSY transformations and the Painlevé IV equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a68/
LA  - en
ID  - SIGMA_2012_8_a68
ER  - 
%0 Journal Article
%A David Bermúdez
%T Complex SUSY transformations and the Painlevé IV equation
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a68/
%G en
%F SIGMA_2012_8_a68
David Bermúdez. Complex SUSY transformations and the Painlevé IV equation. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a68/

[1] Ablowitz M.J., Clarkson P.A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149, Cambridge University Press, Cambridge, 1991 | DOI | MR | Zbl

[2] Adler V.È., “Nonlinear chains and Painlevé equations”, Phys. D, 73 (1994), 335–351 | DOI | MR | Zbl

[3] Andrianov A., Cannata F., Ioffe M., Nishnianidze D., “Systems with higher-order shape invariance: spectral and algebraic properties”, Phys. Lett. A, 266 (2000), 341–349 ; arXiv: quant-ph/9902057 | DOI | MR | Zbl

[4] Andrianov A.A., Ioffe M.V., Cannata F., Dedonder J.P., “SUSY quantum mechanics with complex superpotentials and real energy spectra”, Internat. J. Modern Phys. A, 14 (1999), 2675–2688 ; arXiv: quant-ph/9806019 | DOI | MR | Zbl

[5] Aref'eva I., Fernandez D.J., Hussin V., Negro J., Nieto L.M., Samsonov B.F. (Eds.), Progress in Supersymmetric Quantum Mechanics (PSQM'03) (Valladolid, Spain, July 15–19, 2003), J. Phys. A: Math. Gen., 37, 2004 | MR

[6] Bagrov V.G., Samsonov B.F., “Darboux transformation, factorization and supersymmetry in one-dimensional quantum mechanics”, Theoret. and Math. Phys., 104 (1995), 1051–1060 | DOI | MR | Zbl

[7] Bagrov V.G., Samsonov B.F., “Darboux transformation of the Schrödinger equation”, Phys. Particles Nuclei, 28 (1997), 374–397 | DOI | MR

[8] Bassom A.P., Clarkson P.A., Hicks A.C., “Bäcklund transformations and solution hierarchies for the fourth Painlevé equation”, Stud. Appl. Math., 95 (1995), 1–71 | MR | Zbl

[9] Bermúdez D., Fernández C D., “Supersymmetric quantum mechanics and Painlevé IV equation”, SIGMA, 7 (2011), 025, 14 pp. ; arXiv: 1012.0290 | DOI | MR | Zbl

[10] Bermúdez D., Fernández C D., “Complex solutions to the Painlevé IV equation through supersymmetric quantum mechanics”, AIP Conf. Proc., 1420 (2012), 47–51 ; arXiv: 1110.0555 | DOI

[11] Bermúdez D., Fernández C. D.J., “Non-Hermitian {H}amiltonians and the Painlevé IV equation with real parameters”, Phys. Lett. A, 375 (2011), 2974–2978 ; arXiv: 1104.3599 | DOI | MR | Zbl

[12] Boiti M., Pempinelli F., “Nonlinear Schrödinger equation, Bäcklund transformations and Painlevé transcendents”, Nuovo Cimento B, 59 (1980), 40–58 | DOI | MR

[13] Carballo J., Fernández C D., Negro J., Nieto L., “Polynomial Heisenberg algebras”, J. Phys. A: Math. Gen., 37 (2004), 10349–10362 | DOI | MR | Zbl

[14] Clarkson P.A., Kruskal M.D., “New similarity reductions of the Boussinesq equation”, J. Math. Phys., 30 (1989), 2201–2213 | DOI | MR | Zbl

[15] Conte R., Musette M., The Painlevé handbook, Springer, Dordrecht, 2008 | MR | Zbl

[16] Dubov S.Y., Eleonskiĭ V.M., Kulagin N.E., “Equidistant spectra of anharmonic oscillators”, Chaos, 4 (1994), 47–53 | DOI | MR | Zbl

[17] Fernández C. D.J., “New hydrogen-like potentials”, Lett. Math. Phys., 8 (1984), 337–343 | DOI | MR

[18] Fernández C. D.J., Hussin V., “Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states”, J. Phys. A: Math. Gen., 32 (1999), 3603–3619 | DOI | MR | Zbl

[19] Fernández C. D.J., Muñoz R., Ramos A., “Second order SUSY transformations with “complex energies””, Phys. Lett. A, 308 (2003), 11–16 ; arXiv: quant-ph/0212026 | DOI | MR | Zbl

[20] Fernández C. D.J., Negro J., Nieto L., “Elementary systems with partial finite ladder spectra”, Phys. Lett. A, 324 (2004), 139–144 | DOI | Zbl

[21] Florjańczyk M., Gagnon L., “Exact solutions for a higher-order nonlinear Schrödinger equation”, Phys. Rev. A, 41 (1990), 4478–4485 | DOI

[22] Fokas A.S., Its A.R., Kitaev A.V., “Discrete Painlevé equations and their appearance in quantum gravity”, Comm. Math. Phys., 142 (1991), 313–344 | DOI | MR | Zbl

[23] Gravel S., “Hamiltonians separable in Cartesian coordinates and third-order integrals of motion”, J. Math. Phys., 45 (2004), 1003–1019 ; arXiv: math-ph/0302028 | DOI | MR | Zbl

[24] Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, de Gruyter Studies in Mathematics, 28, Walter de Gruyter Co., Berlin, 2002 | DOI | MR | Zbl

[25] Infeld L., Hull T.E., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 | DOI | MR | Zbl

[26] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR | Zbl

[27] Junker G., Roy P., “Conditionally exactly solvable potentials: a supersymmetric construction method”, Ann. Physics, 270 (1998), 155–177 ; arXiv: quant-ph/9803024 | DOI | MR | Zbl

[28] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé transcendent potentials”, J. Math. Phys., 50 (2009), 095202, 18 pp. ; arXiv: 0811.1568 | DOI | MR | Zbl

[29] Mateo J., Negro J., “Third-order differential ladder operators and supersymmetric quantum mechanics”, J. Phys. A: Math. Theor., 41 (2008), 045204, 28 pp. | DOI | MR | Zbl

[30] Mielnik B., “Factorization method and new potentials with the oscillator spectrum”, J. Math. Phys., 25 (1984), 3387–3389 | DOI | MR | Zbl

[31] Nieto M.M., “Relationship between supersymmetry and the inverse method in quantum mechanics”, Phys. Lett. B, 145 (1984), 208–210 | DOI | MR

[32] Paquin G., Winternitz P., “Group theoretical analysis of dispersive long wave equations in two space dimensions”, Phys. D, 46 (1990), 122–138 | DOI | MR | Zbl

[33] Rosas-Ortiz O., Muñoz R., “Non-Hermitian SUSY hydrogen-like Hamiltonians with real spectra”, J. Phys. A: Math. Gen., 36 (2003), 8497–8506 ; arXiv: quant-ph/0302190 | DOI | MR | Zbl

[34] Samsonov B.F., Ovcharov I.N., “The Darboux transformation and nonclassical orthogonal polynomials”, Russian Phys. J., 38 (1995), 378–384 | DOI | MR | Zbl

[35] Sukumar C.V., “Supersymmetric quantum mechanics of one-dimensional systems”, J. Phys. A: Math. Gen., 18 (1985), 2917–2936 | DOI | MR

[36] Veselov A.P., Shabat A.B., “A dressing chain and the spectral theory of the Schrödinger operator”, Funct. Anal. Appl., 27 (1993), 81–96 | DOI | MR | Zbl

[37] Wess J., Bagger J., Supersymmetry and supergravity, Princeton Series in Physics, 2nd ed., Princeton University Press, Princeton, NJ, 1992 | MR

[38] Winternitz P., “Physical applications of Painlevé type equations quadratic in the highest derivatives”, Painlevé Transcendents (Sainte-Adèle, PQ, 1990), NATO Adv. Sci. Inst. Ser. B Phys., 278, Plenum, New York, 1992, 425–431 | MR | Zbl

[39] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 188 (1981), 513–554 | DOI | Zbl