@article{SIGMA_2012_8_a68,
author = {David Berm\'udez},
title = {Complex {SUSY} transformations and the {Painlev\'e} {IV} equation},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a68/}
}
David Bermúdez. Complex SUSY transformations and the Painlevé IV equation. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a68/
[1] Ablowitz M.J., Clarkson P.A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149, Cambridge University Press, Cambridge, 1991 | DOI | MR | Zbl
[2] Adler V.È., “Nonlinear chains and Painlevé equations”, Phys. D, 73 (1994), 335–351 | DOI | MR | Zbl
[3] Andrianov A., Cannata F., Ioffe M., Nishnianidze D., “Systems with higher-order shape invariance: spectral and algebraic properties”, Phys. Lett. A, 266 (2000), 341–349 ; arXiv: quant-ph/9902057 | DOI | MR | Zbl
[4] Andrianov A.A., Ioffe M.V., Cannata F., Dedonder J.P., “SUSY quantum mechanics with complex superpotentials and real energy spectra”, Internat. J. Modern Phys. A, 14 (1999), 2675–2688 ; arXiv: quant-ph/9806019 | DOI | MR | Zbl
[5] Aref'eva I., Fernandez D.J., Hussin V., Negro J., Nieto L.M., Samsonov B.F. (Eds.), Progress in Supersymmetric Quantum Mechanics (PSQM'03) (Valladolid, Spain, July 15–19, 2003), J. Phys. A: Math. Gen., 37, 2004 | MR
[6] Bagrov V.G., Samsonov B.F., “Darboux transformation, factorization and supersymmetry in one-dimensional quantum mechanics”, Theoret. and Math. Phys., 104 (1995), 1051–1060 | DOI | MR | Zbl
[7] Bagrov V.G., Samsonov B.F., “Darboux transformation of the Schrödinger equation”, Phys. Particles Nuclei, 28 (1997), 374–397 | DOI | MR
[8] Bassom A.P., Clarkson P.A., Hicks A.C., “Bäcklund transformations and solution hierarchies for the fourth Painlevé equation”, Stud. Appl. Math., 95 (1995), 1–71 | MR | Zbl
[9] Bermúdez D., Fernández C D., “Supersymmetric quantum mechanics and Painlevé IV equation”, SIGMA, 7 (2011), 025, 14 pp. ; arXiv: 1012.0290 | DOI | MR | Zbl
[10] Bermúdez D., Fernández C D., “Complex solutions to the Painlevé IV equation through supersymmetric quantum mechanics”, AIP Conf. Proc., 1420 (2012), 47–51 ; arXiv: 1110.0555 | DOI
[11] Bermúdez D., Fernández C. D.J., “Non-Hermitian {H}amiltonians and the Painlevé IV equation with real parameters”, Phys. Lett. A, 375 (2011), 2974–2978 ; arXiv: 1104.3599 | DOI | MR | Zbl
[12] Boiti M., Pempinelli F., “Nonlinear Schrödinger equation, Bäcklund transformations and Painlevé transcendents”, Nuovo Cimento B, 59 (1980), 40–58 | DOI | MR
[13] Carballo J., Fernández C D., Negro J., Nieto L., “Polynomial Heisenberg algebras”, J. Phys. A: Math. Gen., 37 (2004), 10349–10362 | DOI | MR | Zbl
[14] Clarkson P.A., Kruskal M.D., “New similarity reductions of the Boussinesq equation”, J. Math. Phys., 30 (1989), 2201–2213 | DOI | MR | Zbl
[15] Conte R., Musette M., The Painlevé handbook, Springer, Dordrecht, 2008 | MR | Zbl
[16] Dubov S.Y., Eleonskiĭ V.M., Kulagin N.E., “Equidistant spectra of anharmonic oscillators”, Chaos, 4 (1994), 47–53 | DOI | MR | Zbl
[17] Fernández C. D.J., “New hydrogen-like potentials”, Lett. Math. Phys., 8 (1984), 337–343 | DOI | MR
[18] Fernández C. D.J., Hussin V., “Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states”, J. Phys. A: Math. Gen., 32 (1999), 3603–3619 | DOI | MR | Zbl
[19] Fernández C. D.J., Muñoz R., Ramos A., “Second order SUSY transformations with “complex energies””, Phys. Lett. A, 308 (2003), 11–16 ; arXiv: quant-ph/0212026 | DOI | MR | Zbl
[20] Fernández C. D.J., Negro J., Nieto L., “Elementary systems with partial finite ladder spectra”, Phys. Lett. A, 324 (2004), 139–144 | DOI | Zbl
[21] Florjańczyk M., Gagnon L., “Exact solutions for a higher-order nonlinear Schrödinger equation”, Phys. Rev. A, 41 (1990), 4478–4485 | DOI
[22] Fokas A.S., Its A.R., Kitaev A.V., “Discrete Painlevé equations and their appearance in quantum gravity”, Comm. Math. Phys., 142 (1991), 313–344 | DOI | MR | Zbl
[23] Gravel S., “Hamiltonians separable in Cartesian coordinates and third-order integrals of motion”, J. Math. Phys., 45 (2004), 1003–1019 ; arXiv: math-ph/0302028 | DOI | MR | Zbl
[24] Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, de Gruyter Studies in Mathematics, 28, Walter de Gruyter Co., Berlin, 2002 | DOI | MR | Zbl
[25] Infeld L., Hull T.E., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 | DOI | MR | Zbl
[26] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR | Zbl
[27] Junker G., Roy P., “Conditionally exactly solvable potentials: a supersymmetric construction method”, Ann. Physics, 270 (1998), 155–177 ; arXiv: quant-ph/9803024 | DOI | MR | Zbl
[28] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé transcendent potentials”, J. Math. Phys., 50 (2009), 095202, 18 pp. ; arXiv: 0811.1568 | DOI | MR | Zbl
[29] Mateo J., Negro J., “Third-order differential ladder operators and supersymmetric quantum mechanics”, J. Phys. A: Math. Theor., 41 (2008), 045204, 28 pp. | DOI | MR | Zbl
[30] Mielnik B., “Factorization method and new potentials with the oscillator spectrum”, J. Math. Phys., 25 (1984), 3387–3389 | DOI | MR | Zbl
[31] Nieto M.M., “Relationship between supersymmetry and the inverse method in quantum mechanics”, Phys. Lett. B, 145 (1984), 208–210 | DOI | MR
[32] Paquin G., Winternitz P., “Group theoretical analysis of dispersive long wave equations in two space dimensions”, Phys. D, 46 (1990), 122–138 | DOI | MR | Zbl
[33] Rosas-Ortiz O., Muñoz R., “Non-Hermitian SUSY hydrogen-like Hamiltonians with real spectra”, J. Phys. A: Math. Gen., 36 (2003), 8497–8506 ; arXiv: quant-ph/0302190 | DOI | MR | Zbl
[34] Samsonov B.F., Ovcharov I.N., “The Darboux transformation and nonclassical orthogonal polynomials”, Russian Phys. J., 38 (1995), 378–384 | DOI | MR | Zbl
[35] Sukumar C.V., “Supersymmetric quantum mechanics of one-dimensional systems”, J. Phys. A: Math. Gen., 18 (1985), 2917–2936 | DOI | MR
[36] Veselov A.P., Shabat A.B., “A dressing chain and the spectral theory of the Schrödinger operator”, Funct. Anal. Appl., 27 (1993), 81–96 | DOI | MR | Zbl
[37] Wess J., Bagger J., Supersymmetry and supergravity, Princeton Series in Physics, 2nd ed., Princeton University Press, Princeton, NJ, 1992 | MR
[38] Winternitz P., “Physical applications of Painlevé type equations quadratic in the highest derivatives”, Painlevé Transcendents (Sainte-Adèle, PQ, 1990), NATO Adv. Sci. Inst. Ser. B Phys., 278, Plenum, New York, 1992, 425–431 | MR | Zbl
[39] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 188 (1981), 513–554 | DOI | Zbl