@article{SIGMA_2012_8_a67,
author = {Ilarion Melnikov and Savdeep Sethi and Eric Sharpe},
title = {Recent developments in (0,2) mirror symmetry},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a67/}
}
Ilarion Melnikov; Savdeep Sethi; Eric Sharpe. Recent developments in (0,2) mirror symmetry. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a67/
[1] Adams A., Basu A., Sethi S., “(0,2) duality”, Adv. Theor. Math. Phys., 7 (2003), 865–950 ; arXiv: hep-th/0309226 | MR
[2] Adams A., Distler J., Ernebjerg M., “Topological heterotic rings”, Adv. Theor. Math. Phys., 10 (2006), 657–682 ; arXiv: hep-th/0506263 | MR | Zbl
[3] Aspinwall P.S., Greene B.R., Morrison D.R., “The monomial-divisor mirror map”, Int. Math. Res. Not., 1993:12 (1993), 319–337 ; arXiv: alg-geom/9309007 | DOI | MR | Zbl
[4] Aspinwall P.S., Morrison D.R., “Topological field theory and rational curves”, Comm. Math. Phys., 151 (1993), 245–262 ; arXiv: hep-th/9110048 | DOI | MR | Zbl
[5] Aspinwall P.S., Plesser M.R., Elusive worldsheet instantons in heterotic string compactifications, arXiv: 1106.2998
[6] Basu A., Sethi S., “World-sheet stability of (0,2) linear sigma models”, Phys. Rev. D, 68 (2003), 025003, 8 pp. ; arXiv: hep-th/0303066 | DOI | MR
[7] Batyrev V.V., “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3 (1994), 493–535 ; arXiv: alg-geom/9310003 | MR | Zbl
[8] Batyrev V.V., “Quantum cohomology rings of toric manifolds”, Astérisque, no. 218, 1993, 9–34 ; arXiv: alg-geom/9310004 | MR | Zbl
[9] Batyrev V.V., Materov E.N., “Toric residues and mirror symmetry”, Mosc. Math. J., 2 (2002), 435–475 ; arXiv: math.AG/0203216 | MR | Zbl
[10] Beasley C., Witten E., “Residues and world-sheet instantons”, J. High Energy Phys., 2003:10 (2003), 065, 39 pp. ; arXiv: hep-th/0304115 | DOI | MR
[11] Blumenhagen R., Flohr M., “Aspects of (0,2) orbifolds and mirror symmetry”, Phys. Lett. B, 404 (1997), 41–48 ; arXiv: hep-th/9702199 | DOI | MR
[12] Blumenhagen R., Schimmrigk R., Wißkirchen A., “(0,2) mirror symmetry”, Nuclear Phys. B, 486 (1997), 598–628 ; arXiv: hep-th/9609167 | DOI | MR | Zbl
[13] Blumenhagen R., Sethi S., “On orbifolds of (0,2) models”, Nuclear Phys. B, 491 (1997), 263–278 ; arXiv: hep-th/9611172 | DOI | MR | Zbl
[14] Borisov L.A., “Higher-Stanley–Reisner rings and toric residues”, Compos. Math., 141 (2005), 161–174 ; arXiv: math.AG/0306307 | DOI | MR | Zbl
[15] Borisov L.A., Kaufmann R.M., On CY-LG correspondence for (0,2) toric models, arXiv: 1102.5444 | MR
[16] Candelas P., de la Ossa X.C., Green P.S., Parkes L., “An exactly soluble superconformal theory from a mirror pair of Calabi–Yau manifolds”, Phys. Lett. B, 258 (1991), 118–126 | DOI | MR
[17] Cox D.A., Katz S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, 68, American Mathematical Society, Providence, RI, 1999 | MR | Zbl
[18] Dijkgraaf R., Verlinde H., Verlinde E., “Notes on topological string theory and 2D quantum gravity”, String Theory and Quantum Gravity (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, 91–156 | MR
[19] Donagi R., Guffin J., Katz S., Sharpe E., A mathematical theory of quantum sheaf cohomology, arXiv: 1110.3751
[20] Donagi R., Guffin J., Katz S., Sharpe E., Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties, arXiv: 1110.3752
[21] Giveon A., Porrati M., Rabinovici E., “Target space duality in string theory”, Phys. Rep., 244 (1994), 77–202 ; arXiv: hep-th/9401139 | DOI | MR
[22] Greene B.R., Plesser M.R., “Duality in Calabi–Yau moduli space”, Nuclear Phys. B, 338 (1990), 15–37 | DOI | MR
[23] Guffin J., Quantum sheaf cohomology, a précis, arXiv: 1101.1305
[24] Guffin J., Katz S., “Deformed quantum cohomology and (0,2) mirror symmetry”, J. High Energy Phys., 2010:8 (2010), 109, 27 pp. ; arXiv: 0710.2354 | DOI | MR
[25] Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R., Zaslow E., Mirror symmetry, Clay Mathematics Monographs, 1, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[26] Hori K., Vafa C., Mirror symmetry, arXiv: hep-th/0002222
[27] Kapranov M.M., “A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290 (1991), 277–285 | DOI | MR | Zbl
[28] Karu K., “Toric residue mirror conjecture for Calabi–Yau complete intersections”, J. Algebraic Geom., 14 (2005), 741–760 ; arXiv: math.AG/0311338 | DOI | MR | Zbl
[29] Katz S., Sharpe E., “Notes on certain (0,2) correlation functions”, Comm. Math. Phys., 262 (2006), 611–644 ; arXiv: hep-th/0406226 | DOI | MR | Zbl
[30] Kontsevich M., “Homological algebra of mirror symmetry”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 120–139 ; arXiv: alg-geom/9411018 | MR | Zbl
[31] Kreuzer M., McOrist J., Melnikov I.V., Plesser M.R., “(0,2) deformations of linear sigma models”, J. High Energy Phys., 2011:7 (2011), 044, 30 pp. ; arXiv: 1001.2104 | DOI | MR
[32] Kreuzer M., Skarke H., “Complete classification of reflexive polyhedra in four dimensions”, Adv. Theor. Math. Phys., 4 (2000), 1209–1230 ; arXiv: hep-th/0002240 | MR | Zbl
[33] McOrist J., “The revival of (0,2) sigma models”, Internat. J. Modern Phys. A, 26 (2011), 1–41 ; arXiv: 1010.4667 | DOI | MR | Zbl
[34] McOrist J., Melnikov I.V., “Half-twisted correlators from the Coulomb branch”, J. High Energy Phys., 2008:4 (2008), 071, 19 pp. ; arXiv: 0712.3272 | DOI | MR | Zbl
[35] McOrist J., Melnikov I.V., Old issues and linear sigma models, arXiv: 1103.1322
[36] McOrist J., Melnikov I.V., “Summing the instantons in half-twisted linear sigma models”, J. High Energy Phys., 2009, no. 2, 026, 61 pp. ; arXiv: 0810.0012 | DOI | MR | Zbl
[37] Melnikov I.V., “(0,2) Landau–Ginzburg models and residues”, J. High Energy Phys., 2009:9 (2009), 118, 25 pp. ; arXiv: 0902.3908 | DOI | MR
[38] Melnikov I.V., Plesser M.R., “A (0,2) mirror map”, J. High Energy Phys., 2011:2 (2011), 001, 15 pp. ; arXiv: 1003.1303 | DOI | MR
[39] Melnikov I.V., Sethi S., “Half-twisted (0,2) Landau–Ginzburg models”, J. High Energy Phys., 2008:3 (2008), 040, 21 pp. ; arXiv: 0712.1058 | DOI | MR
[40] Morrison D.R., Plesser M.R., “Summing the instantons: quantum cohomology and mirror symmetry in toric varieties”, Nuclear Phys. B, 440 (1995), 279–354 ; arXiv: hep-th/9412236 | DOI | MR | Zbl
[41] Morrison D.R., Plesser M.R., “Towards mirror symmetry as duality for two-dimensional abelian gauge theories”, Strings'95 (Los Angeles, CA, 1995), World Sci. Publ., River Edge, NJ, 1996, 374–387 ; arXiv: hep-th/9508107 | MR
[42] Periwal V., Strominger A., “Kähler geometry of the space of $N=2$ superconformal field theories”, Phys. Lett. B, 235 (1990), 261–267 | DOI | MR
[43] Sharpe E., “Notes on certain other (0,2) correlation functions”, Adv. Theor. Math. Phys., 13 (2009), 33–70 ; arXiv: hep-th/0605005 | MR | Zbl
[44] Sharpe E., “Notes on correlation functions in (0,2) theories”, Snowbird Lectures on String Geometry, Contemp. Math., 401, Amer. Math. Soc., Providence, RI, 2006, 93–104 ; arXiv: hep-th/0502064 | DOI | MR | Zbl
[45] Silverstein E., Witten E., “Criteria for conformal invariance of (0,2) models”, Nuclear Phys. B, 444 (1995), 161–190 ; arXiv: hep-th/9503212 | DOI | MR | Zbl
[46] Strominger A., Yau S.T., Zaslow E., “Mirror symmetry is $T$-duality”, Nuclear Phys. B, 479 (1996), 243–259 ; arXiv: hep-th/9505162 | DOI | MR | Zbl
[47] Szenes A., Vergne M., “Toric reduction and a conjecture of Batyrev and Materov”, Invent. Math., 158 (2004), 453–495 ; arXiv: math.AT/0306311 | DOI | MR | Zbl
[48] Tan M.C., “Two-dimensional twisted sigma models and the theory of chiral differential operators”, Adv. Theor. Math. Phys., 10 (2006), 759–851 ; arXiv: hep-th/0604179 | MR | Zbl
[49] Tan M.C., “Two-dimensional twisted sigma models, the mirror chiral de Rham complex, and twisted generalised mirror symmetry”, J. High Energy Phys., 2007:7 (2007), 013, 80 pp. ; arXiv: 0705.0790 | DOI | MR
[50] Tan M.C., Yagi J., “Chiral algebras of (0,2) sigma models: beyond perturbation theory”, Lett. Math. Phys., 84 (2008), 257–273 ; arXiv: 0801.4782 | DOI | MR | Zbl
[51] Witten E., “Mirror manifolds and topological field theory”, Essays on Mirror Manifolds, Int. Press, Hong Kong, 1992, 120–158 ; arXiv: hep-th/9112056 | MR
[52] Witten E., “Phases of $N=2$ theories in two dimensions”, Nuclear Phys. B, 403 (1993), 159–222 ; arXiv: hep-th/9301042 | DOI | MR | Zbl
[53] Yagi J., Chiral algebras of (0,2) models, arXiv: 1001.0118 | MR