Discrete Fourier analysis and Chebyshev polynomials with $G_2$ group
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The discrete Fourier analysis on the $30^{\circ}$$60^{\circ}$$90^{\circ}$ triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group $G_2$, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm–Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of $m$-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type.
Keywords: discrete Fourier series; trigonometric; group $G_2$; PDE; orthogonal polynomials.
@article{SIGMA_2012_8_a66,
     author = {Huiyuan Li and Jiachang Sun and Yuan Xu},
     title = {Discrete {Fourier} analysis and {Chebyshev} polynomials with $G_2$ group},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a66/}
}
TY  - JOUR
AU  - Huiyuan Li
AU  - Jiachang Sun
AU  - Yuan Xu
TI  - Discrete Fourier analysis and Chebyshev polynomials with $G_2$ group
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a66/
LA  - en
ID  - SIGMA_2012_8_a66
ER  - 
%0 Journal Article
%A Huiyuan Li
%A Jiachang Sun
%A Yuan Xu
%T Discrete Fourier analysis and Chebyshev polynomials with $G_2$ group
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a66/
%G en
%F SIGMA_2012_8_a66
Huiyuan Li; Jiachang Sun; Yuan Xu. Discrete Fourier analysis and Chebyshev polynomials with $G_2$ group. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a66/

[1] Beerends R.J., “Chebyshev polynomials in several variables and the radial part of the Laplace–Beltrami operator”, Trans. Amer. Math. Soc., 328 (1991), 779–814 | DOI | MR | Zbl

[2] Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, 3rd ed., Springer-Verlag, New York, 1999 | MR | Zbl

[3] Dudgeon D.E., Mersereau R.M., Multidimensional digital signal processing, Prentice-Hall Inc., Englewood Cliffs, NJ, 1984 | Zbl

[4] Dunkl C.F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl

[5] Fuglede B., “Commuting self-adjoint partial differential operators and a group theoretic problem”, J. Funct. Anal., 16 (1974), 101–121 | DOI | MR | Zbl

[6] Koornwinder T.H., “Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III”, Nederl. Akad. Wetensch. Proc. Ser. A, 77 (1974), 357–369 | DOI | MR | Zbl

[7] Koornwinder T.H., “Two-variable analogues of the classical orthogonal polynomials”, Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), Academic Press, New York, 1975, 435–495 | MR

[8] Krall H.L., Sheffer I.M., “Orthogonal polynomials in two variables”, Ann. Mat. Pura Appl. (4), 76 (1967), 325–376 | DOI | MR | Zbl

[9] Li H., Sun J., Xu Y., “Discrete Fourier analysis, cubature, and interpolation on a hexagon and a triangle”, SIAM J. Numer. Anal., 46 (2008), 1653–1681 ; arXiv: 0712.3093 | DOI | MR | Zbl

[10] Li H., Sun J., Xu Y., “Discrete Fourier analysis with lattices on planar domains”, Numer. Algorithms, 55 (2010), 279–300 ; arXiv: 0910.5286 | DOI | MR | Zbl

[11] Li H., Xu Y., “Discrete Fourier analysis on fundamental domain and simplex of $A_d$ lattice in $d$-variables”, J. Fourier Anal. Appl., 16 (2010), 383–433 ; arXiv: 0809.1079 | DOI | MR | Zbl

[12] Marks II R.J., Introduction to Shannon sampling and interpolation theory, Springer Texts in Electrical Engineering, Springer-Verlag, New York, 1991 | DOI | MR

[13] Moody R.V., Patera J., “Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups”, Adv. in Appl. Math., 47 (2011), 509–535 ; arXiv: 1005.2773 | DOI | MR | Zbl

[14] Munthe-Kaas H.Z., “On group Fourier analysis and symmetry preserving discretizations of PDEs”, J. Phys. A: Math. Gen., 39 (2006), 5563–5584 | DOI | MR | Zbl

[15] Stroud A.H., Approximate calculation of multiple integrals, Prentice-Hall Series in Automatic Computation, Prentice-Hall Inc., Englewood Cliffs, NJ, 1971 | MR | Zbl

[16] Suetin P.K., Orthogonal polynomials in two variables, Analytical Methods and Special Functions, 3, Gordon and Breach Science Publishers, Amsterdam, 1999 | MR | Zbl

[17] Sun J., “Multivariate Fourier series over a class of non tensor-product partition domains”, J. Comput. Math., 21 (2003), 53–62 | MR | Zbl

[18] Szajewska M., “Four types of special functions of $G_2$ and their discretization”, Integral Transforms Spec. Funct., 23 (2012), 455–472 ; arXiv: 1101.2502 | DOI | MR | Zbl

[19] Xu Y., “Polynomial interpolation in several variables, cubature formulae, and ideals”, Adv. Comput. Math., 12 (2000), 363–376 | DOI | MR | Zbl