@article{SIGMA_2012_8_a65,
author = {Francesco Calogero and Ge Yi},
title = {A new class of solvable many-body problems},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a65/}
}
Francesco Calogero; Ge Yi. A new class of solvable many-body problems. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a65/
[1] Olshanetsky M.A., Perelomov A.M., “Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature”, Lett. Nuovo Cimento, 16 (1976), 333–339 | DOI | MR
[2] Olshanetsky M.A., Perelomov A.M., “Completely integrable Hamiltonian systems connected with semisimple Lie algebras”, Invent. Math., 37 (1976), 93–108 | DOI | MR | Zbl
[3] Olshanetsky M.A., Perelomov A.M., “Explicit solutions of some completely integrable systems”, Lett. Nuovo Cimento, 17 (1976), 97–101 | DOI | MR
[4] Olshanetsky M.A., Perelomov A.M., “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71 (1981), 313–400 | DOI | MR
[5] Calogero F., Classical many-body problems amenable to exact treatments, Lecture Notes in Physics. New Series m: Monographs, 66, Springer-Verlag, Berlin, 2001 | MR | Zbl
[6] Calogero F., Isochronous systems, Oxford University Press, Oxford, 2008 (A paperback edition of this monograph has been published by Oxford University Press in September 2012: it coincides with the hardback version, except for the corrections of several misprints, and the addition of a two-page “Preface to the paperback edition” reporting a number of relevant new references.) | DOI | MR | Zbl
[7] Bruschi M., Calogero F., Droghei R., “Integrability, analyticity, isochrony, equilibria, small oscillations, and Diophantine relations: results from the stationary Burgers hierarchy”, J. Phys. A: Math. Theor., 42 (2009), 475202, 9 pp. | DOI | MR | Zbl
[8] Bruschi M., Calogero F., Droghei R., “Integrability, analyticity, isochrony, equilibria, small oscillations, and Diophantine relations: results from the stationary Korteweg–de Vries hierarchy”, J. Math. Phys., 50 (2009), 122701, 19 pp. | DOI | MR | Zbl
[9] Calogero F., “A new class of solvable dynamical systems”, J. Math. Phys., 49 (2008), 052701, 9 pp. | DOI | MR | Zbl
[10] Calogero F., “Two new solvable dynamical systems of goldfish type”, J. Nonlinear Math. Phys., 17 (2010), 397–414 | DOI | MR | Zbl
[11] Calogero F., “Isochronous dynamical systems”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369 (2011), 1118–1136 | DOI | MR | Zbl
[12] Calogero F., “A new goldfish model”, Theoret. and Math. Phys., 167 (2011), 714–724 | DOI
[13] Calogero F., “Another new goldfish model”, Theoret. and Math. Phys., 171 (2012), 629–640 | DOI
[14] Calogero F., “An integrable many-body problem”, J. Math. Phys., 52 (2011), 102702, 5 pp. | DOI | MR
[15] Calogero F., “New solvable many-body model of goldfish type”, J. Nonlinear Math. Phys., 19 (2012), 1250006, 19 pp. | DOI | MR | Zbl
[16] Calogero F., “Two quite similar matrix ODEs and the many-body problems related to them”, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1260002, 6 pp. | DOI | MR
[17] Calogero F., “Another new solvable many-body model of goldfish type”, SIGMA, 8 (2012), 046, 17 pp. ; arXiv: 1207.4850 | DOI | MR
[18] Calogero F., Iona S., “Isochronous dynamical system and Diophantine relations. I”, J. Nonlinear Math. Phys., 16 (2009), 105–116 | DOI | MR | Zbl
[19] Calogero F., Leyvraz F., “Examples of isochronous Hamiltonians: classical and quantal treatments”, J. Phys. A: Math. Theor., 41 (2008), 175202, 11 pp. | DOI | MR | Zbl
[20] Calogero F., Leyvraz F., “A new class of isochronous dynamical systems”, J. Phys. A: Math. Theor., 41 (2008), 295101, 14 pp. | DOI | MR | Zbl
[21] Calogero F., Leyvraz F., “Isochronous oscillators”, J. Nonlinear Math. Phys., 17 (2010), 103–110 | DOI | MR | Zbl
[22] Calogero F., Leyvraz F., “Solvable systems of isochronous, multi-periodic or asymptotically isochronous nonlinear oscillators”, J. Nonlinear Math. Phys., 17 (2010), 111–120 | DOI | MR | Zbl
[23] Droghei R., Calogero F., Ragnisco O., “An isochronous variant of the Ruijsenaars–Toda model: equilibrium configurations, behavior in their neighborhood, Diophantine relations”, J. Phys. A: Math. Theor., 42 (2009), 445207, 9 pp. | DOI | MR | Zbl
[24] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. (Eds.), Higher transcendental functions, v. I, Bateman Manuscript Project, McGraw-Hill Book Co., New York, 1953