@article{SIGMA_2012_8_a64,
author = {Harry W. Braden and Timothy P. Northover},
title = {Bring's curve: its period matrix and the vector of {Riemann} constants},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a64/}
}
TY - JOUR AU - Harry W. Braden AU - Timothy P. Northover TI - Bring's curve: its period matrix and the vector of Riemann constants JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a64/ LA - en ID - SIGMA_2012_8_a64 ER -
Harry W. Braden; Timothy P. Northover. Bring's curve: its period matrix and the vector of Riemann constants. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a64/
[1] Berndt B.C., Ramanujan's notebooks. Part III, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[2] Braden H.W., Northover T.P., “Klein's curve”, J. Phys. A: Math. Theor., 43 (2010), 434009, 17 pp. ; arXiv: 0905.4202 | DOI | MR | Zbl
[3] Breuer T., Characters and automorphism groups of compact Riemann surfaces, London Mathematical Society Lecture Note Series, 280, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[4] Bujalance E., Etayo J.J., Gamboa J.M., Gromadzki G., Automorphism groups of compact bordered Klein surfaces. A combinatorial approach, Lecture Notes in Mathematics, 1439, Springer-Verlag, Berlin, 1990 | MR | Zbl
[5] Craig M., “A sextic Diophantine equation”, Austral. Math. Soc. Gaz., 29 (2002), 27–29 | MR | Zbl
[6] Craig M., “On Klein's quartic curve”, Austral. Math. Soc. Gaz., 31 (2004), 115–120 | MR | Zbl
[7] Deconinck B., van Hoeij M., “Computing Riemann matrices of algebraic curves”, Phys. D, 152/153 (2001), 28–46 | DOI | MR | Zbl
[8] Dye R.H., “A plane sextic curve of genus $4$ with $A_5$ for collineation group”, J. London Math. Soc., 52 (1995), 97–110 | DOI | MR | Zbl
[9] Edge W.L., “Bring's curve”, J. London Math. Soc., 18 (1978), 539–545 | DOI | MR | Zbl
[10] Edge W.L., “Tritangent planes of Bring's curve”, J. London Math. Soc., 23 (1981), 215–222 | DOI | MR | Zbl
[11] Farkas H.M., Kra I., Riemann surfaces, Graduate Texts in Mathematics, 71, Springer-Verlag, New York, 1980 | DOI | MR | Zbl
[12] Fay J.D., Theta functions on Riemann surfaces, Lecture Notes in Mathematics, 352, Springer-Verlag, Berlin, 1973 | MR | Zbl
[13] Hulek K., “Geometry of the Horrocks–Mumford bundle”, Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Amer. Math. Soc., Providence, RI, 1987, 69–85 | MR
[14] Kallel S., Sjerve D., “Invariant spin structures on Riemann surfaces”, Ann. Fac. Sci. Toulouse Math. (6), 19 (2010), 457–477 ; arXiv: math.GT/0610568 | DOI | MR | Zbl
[15] Northover T.P., Riemann surfaces with symmetry: algorithms and applications, Ph.D. thesis, Edinburgh University, 2011
[16] Rauch H.E., Lewittes J., “The Riemann surface of Klein with 168 automorphisms”, Problems in Analysis, Papers Dedicated to Salomon Bochner, 1969, Princeton Univ. Press, Princeton, NJ, 1970, 297–308 | MR | Zbl
[17] Riera G., Rodríguez R.E., “The period matrix of Bring's curve”, Pacific J. Math., 154 (1992), 179–200 | MR | Zbl
[18] Vinnikov V., “Selfadjoint determinantal representations of real plane curves”, Math. Ann., 296 (1993), 453–479 | DOI | MR | Zbl
[19] Weber M., “Kepler's small stellated dodecahedron as a Riemann surface”, Pacific J. Math., 220 (2005), 167–182 | DOI | MR | Zbl