@article{SIGMA_2012_8_a63,
author = {Jean Avan and Baptiste Billaud and Genevi\'eve Rollet},
title = {Classification of non-affine {non-Hecke} dynamical $R$-matrices},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a63/}
}
TY - JOUR AU - Jean Avan AU - Baptiste Billaud AU - Geneviéve Rollet TI - Classification of non-affine non-Hecke dynamical $R$-matrices JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a63/ LA - en ID - SIGMA_2012_8_a63 ER -
Jean Avan; Baptiste Billaud; Geneviéve Rollet. Classification of non-affine non-Hecke dynamical $R$-matrices. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a63/
[1] Avan J., Babelon O., Billey E., “The Gervais–Neveu–Felder equation and the quantum Calogero–Moser systems”, Comm. Math. Phys., 178 (1996), 281–299 ; arXiv: hep-th/9505091 | DOI | MR | Zbl
[2] Avan J., Kulish P.P., Rollet G., “Reflection $K$-matrices related to Temperley–Lieb $R$-matrices”, Theoret. and Math. Phys., 169 (2011), 1530–1538 ; arXiv: 1012.3012 | DOI
[3] Avan J., Ragoucy E., Rational Calogero–Moser model: explicit forms and $r$-matrix structure of the second Poisson structure, arXiv: 1207.5368
[4] Avan J., Talon M., “Classical $R$-matrix structure for the Calogero model”, Phys. Lett. B, 303 (1993), 33–37 ; arXiv: hep-th/9210128 | DOI | MR
[5] Balog J., Dabrowski L., Fehér L., “Classical $r$-matrix and exchange algebra in WZNW and Toda theories”, Phys. Lett. B, 244 (1990), 227–234 | DOI | MR
[6] Balog J., Fehér L., Palla L., “Chiral extensions of the WZNW phase space, Poisson–Lie symmetries and groupoids”, Nuclear Phys. B, 568 (2000), 503–542 ; arXiv: hep-th/9910046 | DOI | MR | Zbl
[7] Bernard D., “On the Wess–Zumino–Witten models on Riemann surfaces”, Nuclear Phys. B, 309 (1988), 145–174 | DOI | MR
[8] Bernard D., “On the Wess–Zumino–Witten models on the torus”, Nuclear Phys. B, 303 (1988), 77–93 | DOI | MR
[9] Calogero F., “Solution of a three-body problem in one dimension”, J. Math. Phys., 10 (1969), 2191–2196 | DOI | MR
[10] Donin J., Mudrov A., “Dynamical Yang–Baxter equation and quantum vector bundles”, Comm. Math. Phys., 254 (2005), 719–760 ; arXiv: math.QA/0306028 | DOI | MR | Zbl
[11] Enriquez B., Etingof P., Quantization of classical dynamical $r$-matrices with nonabelian base, arXiv: math.QA/0311224 | MR
[12] Etingof P., “On the dynamical Yang–Baxter equation”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. II, Higher Ed. Press, Beijing, 2002, 555–570 ; arXiv: math.QA/0207008 | MR | Zbl
[13] Etingof P., Schiffmann O., “Lectures on the dynamical Yang–Baxter equations”, Quantum Groups and Lie Theory (Durham, 1999), London Math. Soc. Lecture Note Ser., 290, Cambridge Univ. Press, Cambridge, 2001, 89–129 ; arXiv: math.QA/9908064 | MR | Zbl
[14] Etingof P., Varchenko A., “Solutions of the quantum dynamical Yang–Baxter equation and dynamical quantum groups”, Comm. Math. Phys., 196 (1998), 591–640 ; arXiv: math.QA/9801135 | DOI | MR | Zbl
[15] Felder G., “Conformal field theory and integrable systems associated to elliptic curves”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 1247–1255 ; arXiv: hep-th/9407154 | DOI | MR | Zbl
[16] Felder G., “Elliptic quantum groups”, XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press, Cambridge, MA, 1995, 211–218 ; arXiv: hep-th/9412207 | MR | Zbl
[17] Furlan P., Hadjiivanov L.K., Isaev A.P., Ogievetsky O.V., Pyatov P.N., Todorov I.T., “Quantum matrix algebra for the $\mathrm{SU}(n)$ WZNW model”, J. Phys. A: Math. Gen., 36 (2003), 5497–5530 ; arXiv: hep-th/0003210 | DOI | MR | Zbl
[18] Gervais J.L., Neveu A., “Novel triangle relation and absence of tachyons in Liouville string field theory”, Nuclear Phys. B, 238 (1984), 125–141 | DOI | MR
[19] Hadjiivanov L.K., Stanev Y.S., Todorov I.T., “Regular basis and $R$-matrices for the $\widehat{\mathrm{su}(n)_k}$ Knizhnik–Zamolodchikov equation”, Lett. Math. Phys., 54 (2000), 137–155 ; arXiv: hep-th/0007187 | DOI | MR | Zbl
[20] Isaev A.P., “Twisted Yang–Baxter equations for linear quantum (super)groups”, J. Phys. A: Math. Gen., 29 (1996), 6903–6910 ; arXiv: q-alg/95110006 | DOI | MR | Zbl
[21] Ju G., Luo X., Wang S., Wu K., “A free-fermion type solution of quantum dynamical Yang–Baxter equation”, Commun. Theor. Phys., 32 (1999), 557–562 | MR
[22] Knizhnik V.G., Zamolodchikov A.B., “Current algebra and Wess–Zumino model in two dimensions”, Nuclear Phys. B, 247 (1984), 83–103 | DOI | MR | Zbl
[23] Moser J., “Three integrable {H}amiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl
[24] Ruijsenaars S.N.M., Schneider H., “A new class of integrable systems and its relation to solitons”, Ann. Physics, 170 (1986), 370–405 | DOI | MR | Zbl
[25] Xu P., “Quantum dynamical Yang–Baxter equation over a nonabelian base”, Comm. Math. Phys., 226 (2002), 475–495 ; arXiv: math.QA/0104071 | DOI | MR | Zbl