Classification of non-affine non-Hecke dynamical $R$-matrices
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete classification of non-affine dynamical quantum $R$-matrices obeying the $\mathcal Gl_n(\mathbb C)$-Gervais–Neveu–Felder equation is obtained without assuming either Hecke or weak Hecke conditions. More general dynamical dependences are observed. It is shown that any solution is built upon elementary blocks, which individually satisfy the weak Hecke condition. Each solution is in particular characterized by an arbitrary partition $\{\mathbb I(i),i\in\{1,\dots,n\}\}$ of the set of indices $\{1,\dots,n\}$ into classes, $\mathbb I(i)$ being the class of the index $i$, and an arbitrary family of signs $(\epsilon_\mathbb I)_{\mathbb I\in\{\mathbb I(i),\,i\in\{1,\dots,n\}\}}$ on this partition. The weak Hecke-type $R$-matrices exhibit the analytical behaviour $R_{ij,ji}=f(\epsilon_{\mathbb I(i)}\Lambda_{\mathbb I(i)}-\epsilon_{\mathbb I(j)}\Lambda_{\mathbb I(j)})$, where $f$ is a particular trigonometric or rational function, $\Lambda_{\mathbb I(i)}=\sum_{j\in\mathbb I(i)}\lambda_j$, and $(\lambda_i)_{i\in\{1,\dots,n\}}$ denotes the family of dynamical coordinates.
Keywords: quantum integrable systems; dynamical Yang–Baxter equation; (weak) Hecke algebras.
@article{SIGMA_2012_8_a63,
     author = {Jean Avan and Baptiste Billaud and Genevi\'eve Rollet},
     title = {Classification of non-affine {non-Hecke} dynamical $R$-matrices},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a63/}
}
TY  - JOUR
AU  - Jean Avan
AU  - Baptiste Billaud
AU  - Geneviéve Rollet
TI  - Classification of non-affine non-Hecke dynamical $R$-matrices
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a63/
LA  - en
ID  - SIGMA_2012_8_a63
ER  - 
%0 Journal Article
%A Jean Avan
%A Baptiste Billaud
%A Geneviéve Rollet
%T Classification of non-affine non-Hecke dynamical $R$-matrices
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a63/
%G en
%F SIGMA_2012_8_a63
Jean Avan; Baptiste Billaud; Geneviéve Rollet. Classification of non-affine non-Hecke dynamical $R$-matrices. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a63/

[1] Avan J., Babelon O., Billey E., “The Gervais–Neveu–Felder equation and the quantum Calogero–Moser systems”, Comm. Math. Phys., 178 (1996), 281–299 ; arXiv: hep-th/9505091 | DOI | MR | Zbl

[2] Avan J., Kulish P.P., Rollet G., “Reflection $K$-matrices related to Temperley–Lieb $R$-matrices”, Theoret. and Math. Phys., 169 (2011), 1530–1538 ; arXiv: 1012.3012 | DOI

[3] Avan J., Ragoucy E., Rational Calogero–Moser model: explicit forms and $r$-matrix structure of the second Poisson structure, arXiv: 1207.5368

[4] Avan J., Talon M., “Classical $R$-matrix structure for the Calogero model”, Phys. Lett. B, 303 (1993), 33–37 ; arXiv: hep-th/9210128 | DOI | MR

[5] Balog J., Dabrowski L., Fehér L., “Classical $r$-matrix and exchange algebra in WZNW and Toda theories”, Phys. Lett. B, 244 (1990), 227–234 | DOI | MR

[6] Balog J., Fehér L., Palla L., “Chiral extensions of the WZNW phase space, Poisson–Lie symmetries and groupoids”, Nuclear Phys. B, 568 (2000), 503–542 ; arXiv: hep-th/9910046 | DOI | MR | Zbl

[7] Bernard D., “On the Wess–Zumino–Witten models on Riemann surfaces”, Nuclear Phys. B, 309 (1988), 145–174 | DOI | MR

[8] Bernard D., “On the Wess–Zumino–Witten models on the torus”, Nuclear Phys. B, 303 (1988), 77–93 | DOI | MR

[9] Calogero F., “Solution of a three-body problem in one dimension”, J. Math. Phys., 10 (1969), 2191–2196 | DOI | MR

[10] Donin J., Mudrov A., “Dynamical Yang–Baxter equation and quantum vector bundles”, Comm. Math. Phys., 254 (2005), 719–760 ; arXiv: math.QA/0306028 | DOI | MR | Zbl

[11] Enriquez B., Etingof P., Quantization of classical dynamical $r$-matrices with nonabelian base, arXiv: math.QA/0311224 | MR

[12] Etingof P., “On the dynamical Yang–Baxter equation”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. II, Higher Ed. Press, Beijing, 2002, 555–570 ; arXiv: math.QA/0207008 | MR | Zbl

[13] Etingof P., Schiffmann O., “Lectures on the dynamical Yang–Baxter equations”, Quantum Groups and Lie Theory (Durham, 1999), London Math. Soc. Lecture Note Ser., 290, Cambridge Univ. Press, Cambridge, 2001, 89–129 ; arXiv: math.QA/9908064 | MR | Zbl

[14] Etingof P., Varchenko A., “Solutions of the quantum dynamical Yang–Baxter equation and dynamical quantum groups”, Comm. Math. Phys., 196 (1998), 591–640 ; arXiv: math.QA/9801135 | DOI | MR | Zbl

[15] Felder G., “Conformal field theory and integrable systems associated to elliptic curves”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 1247–1255 ; arXiv: hep-th/9407154 | DOI | MR | Zbl

[16] Felder G., “Elliptic quantum groups”, XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press, Cambridge, MA, 1995, 211–218 ; arXiv: hep-th/9412207 | MR | Zbl

[17] Furlan P., Hadjiivanov L.K., Isaev A.P., Ogievetsky O.V., Pyatov P.N., Todorov I.T., “Quantum matrix algebra for the $\mathrm{SU}(n)$ WZNW model”, J. Phys. A: Math. Gen., 36 (2003), 5497–5530 ; arXiv: hep-th/0003210 | DOI | MR | Zbl

[18] Gervais J.L., Neveu A., “Novel triangle relation and absence of tachyons in Liouville string field theory”, Nuclear Phys. B, 238 (1984), 125–141 | DOI | MR

[19] Hadjiivanov L.K., Stanev Y.S., Todorov I.T., “Regular basis and $R$-matrices for the $\widehat{\mathrm{su}(n)_k}$ Knizhnik–Zamolodchikov equation”, Lett. Math. Phys., 54 (2000), 137–155 ; arXiv: hep-th/0007187 | DOI | MR | Zbl

[20] Isaev A.P., “Twisted Yang–Baxter equations for linear quantum (super)groups”, J. Phys. A: Math. Gen., 29 (1996), 6903–6910 ; arXiv: q-alg/95110006 | DOI | MR | Zbl

[21] Ju G., Luo X., Wang S., Wu K., “A free-fermion type solution of quantum dynamical Yang–Baxter equation”, Commun. Theor. Phys., 32 (1999), 557–562 | MR

[22] Knizhnik V.G., Zamolodchikov A.B., “Current algebra and Wess–Zumino model in two dimensions”, Nuclear Phys. B, 247 (1984), 83–103 | DOI | MR | Zbl

[23] Moser J., “Three integrable {H}amiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl

[24] Ruijsenaars S.N.M., Schneider H., “A new class of integrable systems and its relation to solitons”, Ann. Physics, 170 (1986), 370–405 | DOI | MR | Zbl

[25] Xu P., “Quantum dynamical Yang–Baxter equation over a nonabelian base”, Comm. Math. Phys., 226 (2002), 475–495 ; arXiv: math.QA/0104071 | DOI | MR | Zbl