@article{SIGMA_2012_8_a62,
author = {Ian Marquette},
title = {Singular isotonic oscillator, supersymmetry and superintegrability},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a62/}
}
Ian Marquette. Singular isotonic oscillator, supersymmetry and superintegrability. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a62/
[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, New York, 1972 | MR
[2] Agboola D., Zhang Y.Z., “Unified derivation of exact solutions for a class of quasi-exactly solvable models”, J. Math. Phys., 53 (2012), 042101, 13 pp. ; arXiv: 1111.1050 | DOI | MR
[3] Andrianov A., Cannata F., Ioffe M., Nishnianidze D., “Systems with higher-order shape invariance: spectral and algebraic properties”, Phys. Lett. A, 266 (2000), 341–349 ; arXiv: quant-ph/9902057 | DOI | MR | Zbl
[4] Berger M.S., Ussembayev N.S., “Isospectral potentials from modified factorization”, Phys. Rev. A, 82 (2010), 022121, 7 pp. ; arXiv: 1008.1528 | DOI | MR
[5] Berger M.S., Ussembayev N.S., “Second-order supersymmetric operators and excited states”, J. Phys. A: Math. Theor., 43 (2010), 385309, 10 pp. ; arXiv: 1007.5116 | DOI | MR | Zbl
[6] Bermúdez D., Fernández C. D.J., “Non-Hermitian {H}amiltonians and the Painlevé IV equation with real parameters”, Phys. Lett. A, 375 (2011), 2974–2978 ; arXiv: 1104.3599 | DOI | MR | Zbl
[7] Bermúdez D., Fernández C. D.J., “Supersymmetric quantum mechanics and Painlevé IV equation”, SIGMA, 7 (2011), 025, 14 pp. ; arXiv: 1012.0290 | DOI | MR | Zbl
[8] Cari{ñ}ena J.F., Perelomov A.M., Ra{ñ}ada M.F., Santander M., “A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator”, J. Phys. A: Math. Theor., 41 (2008), 085301, 10 pp. | DOI | Zbl
[9] Casahorran J., Esteve J.G., “Supersymmetric quantum mechanics, anomalies and factorization”, J. Phys. A: Math. Gen., 25 (1992), L347–L352 | DOI | MR
[10] Das A., Pernice S.A., “Supersymmetry and singular potentials”, Nuclear Phys. B, 561 (1999), 357–384 ; arXiv: hep-th/9905135 | DOI | MR | Zbl
[11] Dean P., “The constrained quantum mechanical harmonic oscillator”, Proc. Cambridge Philos. Soc., 62 (1966), 277–286 | DOI | MR
[12] Demircio{ğ}lu B., Kuru {Ş}., Önder M., Ver{ç}in A., “Two families of superintegrable and isospectral potentials in two dimensions”, J. Math. Phys., 43 (2002), 2133–2150 ; arXiv: quant-ph/0201099 | DOI | MR | Zbl
[13] Fellows J.M., Smith R.A., “Factorization solution of a family of quantum nonlinear oscillators”, J. Phys. A: Math. Theor., 42 (2009), 335303, 13 pp. | DOI | MR | Zbl
[14] Fernandez F.M., “Simple one-dimensional quantum-mechanical model for a particle attached to a surface”, Eur. J. Phys., 31 (2010), 961––967 ; arXiv: 1003.5014 | DOI | Zbl
[15] Frank W.M., Land D.J., Spector R.M., “Singular potentials”, Rev. Modern Phys., 43 (1971), 36–98 | DOI | MR
[16] Gendenshtein L., “Derivation of exact spectra of the Schrödinger equation by means of supersymmetry”, JETP Lett., 38 (1983), 356–359
[17] Grandati Y., “Solvable rational extensions of the isotonic oscillator”, Ann. Physics, 326 (2011), 2074–2090 ; arXiv: 1101.0055 | DOI | MR | Zbl
[18] Gravel S., “Hamiltonians separable in Cartesian coordinates and third-order integrals of motion”, J. Math. Phys., 45 (2004), 1003–1019 ; arXiv: math-ph/0302028 | DOI | MR | Zbl
[19] Hall R.L., Saad N., Ye{ş}ilta{ş} Ö., “Generalized quantum isotonic nonlinear oscillator in $d$ dimensions”, J. Phys. A: Math. Theor., 43 (2010), 465304, 8 pp. ; arXiv: 1010.0620 | DOI | MR | Zbl
[20] Ince E.L., Ordinary differential equations, Dover Publications, New York, 1944 | MR | Zbl
[21] Jevicki A., Rodrigues J.P., “Singular potentials and supersymmetry breaking”, Phys. Lett. B, 146 (1984), 55–58 | DOI | MR
[22] Junker G., Supersymmetric methods in quantum and statistical physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996 | MR
[23] Kraenkel R.A., Senthilvelan M., “On the solutions of the position-dependent effective mass Schrödinger equation of a nonlinear oscillator related with the isotonic oscillator”, J. Phys. A: Math. Theor., 42 (2009), 415303, 10 pp. | DOI | MR | Zbl
[24] Lathouwers L., “The Hamiltonian $H=(-1/2)d^2/dx^2+x^2/2+\lambda /x^2$ reobserved”, J. Math. Phys., 16 (1975), 1393–1395 | DOI | MR
[25] Marquette I., “An infinite family of superintegrable systems from higher order ladder operators and supersymmetry”, J. Phys. Conf. Ser., 284 (2011), 012047, 8 pp. ; arXiv: 1008.3073 | DOI
[26] Marquette I., “Superintegrability and higher order polynomial algebras”, J. Phys. A: Math. Theor., 43 (2010), 135203, 15 pp. ; arXiv: 0908.4399 | DOI | MR | Zbl
[27] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I. Rational function potentials”, J. Math. Phys., 50 (2009), 012101, 23 pp. ; arXiv: 0807.2858 | DOI | MR | Zbl
[28] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé transcendent potentials”, J. Math. Phys., 50 (2009), 095202, 18 pp. ; arXiv: 0811.1568 | DOI | MR | Zbl
[29] Marquette I., “Supersymmetry as a method of obtaining new superintegrable systems with higher order integrals of motion”, J. Math. Phys., 50 (2009), 122102, 10 pp. ; arXiv: 0908.1246 | DOI | MR | Zbl
[30] Marquette I., Winternitz P., “Superintegrable systems with third-order integrals of motion”, J. Phys. A: Math. Theor., 41 (2008), 304031, 10 pp. ; arXiv: 0711.4783 | DOI | MR | Zbl
[31] Márquez I.F., Negro J., Nieto L.M., “Factorization method and singular Hamiltonians”, J. Phys. A: Math. Gen., 31 (1998), 4115–4125 | DOI | MR
[32] Mei W.N., Lee Y.C., “Harmonic oscillator with potential barriers – exact solutions and perturbative treatments”, J. Phys. A: Math. Gen., 16 (1983), 1623–1632 | DOI | MR
[33] Mielnik B., “Factorization method and new potentials with the oscillator spectrum”, J. Math. Phys., 25 (1984), 3387–3389 | DOI | MR | Zbl
[34] Post S., Tsujimoto S., Vinet L., “Families of superintegrable Hamiltonians constructed from exceptional polynomials”, J. Phys. A: Math. Theor. (to appear)
[35] Quesne C., “Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials”, Modern Phys. Lett. A, 26 (2011), 1843–1852 ; arXiv: 1106.1990 | DOI | MR
[36] Robnik M., “Supersymmetric quantum mechanics based on higher excited states”, J. Phys. A: Math. Gen., 30 (1997), 1287–1294 ; arXiv: chao-dyn/9611008 | DOI | MR | Zbl
[37] Samsonov B.F., Ovcharov I.N., “The Darboux transformation and exactly solvable potentials with a quasi-equidistant spectrum”, Russian Phys. J., 38 (1995), 765–771 | DOI | MR | Zbl
[38] Sesma J., “The generalized quantum isotonic oscillator”, J. Phys. A: Math. Theor., 43 (2010), 185303, 14 pp. | DOI | MR | Zbl
[39] Slavyanov S.Yu., “Confluent Heun equation”, Heun's Differential Equations, The Clarendon Press, Oxford University Press, New York, 1995, 87–127 | MR
[40] Slavyanov S.Yu., Lay W., Special functions. A unified theory based on singularities, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000 | MR | Zbl
[41] Spiridonov V., “Universal superpositions of coherent states and self-similar potentials”, Phys. Rev. A, 52 (1995), 1909–1935 ; arXiv: quant-ph/9601030 | DOI
[42] Tkachuk V.M., “Supersymmetric method for constructing quasi-exactly and conditionally-exactly solvable potentials”, J. Phys. A: Math. Gen., 32 (1999), 1291–1300 ; arXiv: quant-ph/9808050 | DOI | MR | Zbl
[43] Veselov A.P., “On Stieltjes relations, Painlevé-IV hierarchy and complex monodromy”, J. Phys. A: Math. Gen., 34 (2001), 3511–3519 ; arXiv: math-ph/0012040 | DOI | MR | Zbl
[44] Whittaker E.T., Watson G.N., A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[45] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 188 (1981), 513–554 | DOI | Zbl
[46] Znojil M., “Comment on “Supersymmetry and singular potentias””, Nuclear Phys. B, 561 (1999), 357–384 ; Nuclear Phys. B, 662 (2003), 554–562 ; arXiv: hep-th/0209262 | DOI | MR | DOI | MR | Zbl
[47] Znojil M., “$\mathcal{PT}$-symmetric harmonic oscillators”, Phys. Lett. A, 259 (1999), 220–223 ; arXiv: quant-ph/9905020 | DOI | MR | Zbl