@article{SIGMA_2012_8_a61,
author = {Rustem Garifullin and Ismagil Habibullin and Marina Yangubaeva},
title = {Affine and finite {Lie} algebras and integrable {Toda} field equations on discrete space-time},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a61/}
}
TY - JOUR AU - Rustem Garifullin AU - Ismagil Habibullin AU - Marina Yangubaeva TI - Affine and finite Lie algebras and integrable Toda field equations on discrete space-time JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a61/ LA - en ID - SIGMA_2012_8_a61 ER -
%0 Journal Article %A Rustem Garifullin %A Ismagil Habibullin %A Marina Yangubaeva %T Affine and finite Lie algebras and integrable Toda field equations on discrete space-time %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a61/ %G en %F SIGMA_2012_8_a61
Rustem Garifullin; Ismagil Habibullin; Marina Yangubaeva. Affine and finite Lie algebras and integrable Toda field equations on discrete space-time. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a61/
[1] Adler V.E., Bobenko A.I., Suris Y.B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543 ; arXiv: nlin.SI/0202024 | DOI | MR | Zbl
[2] Adler V.E., Startsev S.Y., “On discrete analogues of the Liouville equation”, Theoret. and Math. Phys., 121 (1999), 1484–1495 ; arXiv: solv-int/9902016 | DOI | MR | Zbl
[3] Belavin A.A., Polyakov A.M., Zamolodchikov A.B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl
[4] Bobenko A.I., Suris Y.B., “Integrable systems on quad-graphs”, Int. Math. Res. Not., 2002, 573–611 ; arXiv: nlin.SI/0110004 | DOI | MR | Zbl
[5] Bogoyavlensky O.I., “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51 (1976), 201–209 | DOI | MR
[6] Corrigan E., “Recent developments in affine Toda quantum field theory”, Particles and Fields (Banff, AB, 1994), CRM Ser. Math. Phys., Springer, New York, 1999, 1–34 ; arXiv: hep-th/9412213 | MR
[7] Date E., Jimbo M., Miwa T., “Method for generating discrete soliton equations. II”, J. Phys. Soc. Japan, 52 (1983), 4125–4131 | DOI | MR
[8] Doliwa A., “Geometric discretisation of the Toda system”, Phys. Lett. A, 234 (1997), 187–192 ; arXiv: solv-int/9612006 | DOI | MR | Zbl
[9] Drinfel'd V.G., Sokolov V.V., “Lie algebras and equations of Korteweg–de Vries type”, J. Math. Sci., 30 (1985), 1975–2036 | DOI | MR
[10] Fordy A.P., Gibbons J., “Integrable nonlinear Klein–Gordon equations and Toda lattices”, Comm. Math. Phys., 77 (1980), 21–30 | DOI | MR | Zbl
[11] Ganzha E.I., Tsarev S.P., Integration of classical series $A_n$, $B_n$, $C_n$, of exponential systems, Krasnoyarsk State Pedagogical University, Krasnoyarsk, 2001
[12] Garifullin R.N., Gudkova E.V., Habibullin I.T., “Method for searching higher symmetries for quad-graph equations”, J. Phys. A: Math. Theor., 44 (2011), 325202, 16 pp. ; arXiv: 1104.0493 | DOI | MR | Zbl
[13] Guryeva A.M., Zhiber A.V., “On the characteristic equations of a system of quasilinear hyperbolic equations”, Vestnik UGATU, 6 (2005), 26–34
[14] Habibullin I.T., “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023, 9 pp. ; arXiv: nlin.SI/0506027 | DOI | MR | Zbl
[15] Habibullin I.T., “Discrete chains of the series $C$”, Theoret. and Math. Phys., 146 (2006), 170––182 | DOI | MR | Zbl
[16] Habibullin I.T., Gudkova E.V., “Boundary conditions for multidimensional integrable equations”, Funct. Anal. Appl., 38 (2004), 138–148 | DOI | MR
[17] Habibullin I.T., Pekan A., “Characteristic Lie algebra and the classification of semi-discrete models”, Theoret. and Math. Phys., 151 (2007), 781–790 ; arXiv: nlin.SI/0610074 | DOI | MR | Zbl
[18] Habibullin I.T., Zheltukhin K., Yangubaeva M., “Cartan matrices and integrable lattice Toda field equations”, J. Phys. A: Math. Theor., 44 (2011), 465202, 20 pp. ; arXiv: 1105.4446 | DOI | MR | Zbl
[19] Habibullin I.T., Zheltukhina N., Sakieva A., “Discretization of hyperbolic type Darboux integrable equations preserving integrability”, J. Math. Phys., 52 (2011), 093507, 12 pp. ; arXiv: 1102.1236 | DOI | MR
[20] Habibullin I.T., Zheltukhina N., Sakieva A., “On Darboux-integrable semi-discrete chains”, J. Phys. A: Math. Theor., 43 (2010), 434017, 14 pp. ; arXiv: 0907.3785 | DOI | MR | Zbl
[21] Hirota R., “Discrete two-dimensional Toda molecule equation”, J. Phys. Soc. Japan, 56 (1987), 4285–4288 | DOI | MR
[22] Inoue R., Hikami K., “The lattice Toda field theory for simple Lie algebras: Hamiltonian structure and $\tau$-function”, Nuclear Phys. B, 581 (2000), 761–775 | DOI | MR | Zbl
[23] Kimura K., Yamashita T., Nakamura Y., “Conserved quantities of the discrete finite Toda equation and lower bounds of the minimal singular value of upper bidiagonal matrices”, J. Phys. A: Math. Theor., 44 (2011), 285207, 12 pp. | DOI | MR | Zbl
[24] Kuniba A., Nakanishi T., Suzuki J., “Functional relations in solvable lattice models. I. Functional relations and representation theory”, Internat. J. Modern Phys. A, 9 (1994), 5215–5266 ; arXiv: hep-th/9309137 | DOI | MR | Zbl
[25] Kuniba A., Nakanishi T., Suzuki J., “$T$-systems and $Y$-systems in integrable systems”, J. Phys. A: Math. Theor., 44 (2011), 103001, 146 pp. ; arXiv: 1010.1344 | DOI | MR | Zbl
[26] Levi D., Yamilov R.I., “Generalized symmetry integrability test for discrete equations on the square lattice”, J. Phys. A: Math. Theor., 44 (2011), 145207, 22 pp. ; arXiv: 1011.0070 | DOI | MR | Zbl
[27] Leznov A.N., Savel'ev M.V., Group methods for the integration of nonlinear dynamical systems, Nauka, Moscow, 1985 | MR | Zbl
[28] Leznov A.N., Smirnov V.G., Shabat A.B., “Internal symmetry group and integrability conditions for two-dimensional dynamical systems”, Theoret. and Math. Phys., 51 (1982), 322–330 | DOI | MR | Zbl
[29] Mikhailov A.V., “Integrability of a two-dimensional generalization of the Toda chain”, JETP Lett., 30 (1979), 414–418
[30] Mikhailov A.V., Olshanetsky M.A., Perelomov A.M., “Two-dimensional generalized Toda lattice”, Comm. Math. Phys., 79 (1981), 473–488 | DOI | MR
[31] Nieszporski M., “A Laplace ladder diagram of discrete Laplace-type equations”, Theoret. and Math. Phys., 133 (2002), 1576–1584 | DOI | MR
[32] Nijhoff F.W., “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297 (2002), 49–58 ; arXiv: nlin.SI/0110027 | DOI | MR | Zbl
[33] Novikov S.P., Dynnikov I.A., “Discrete spectral symmetries of small-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52 (1997), 1057–1116 ; arXiv: math-ph/0003009 | DOI | MR | Zbl
[34] Olshanetsky M.A., Perelomov A.M., “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71 (1981), 313–400 | DOI | MR
[35] Shabat A.B., “Higher symmetries of two-dimensional lattices”, Phys. Lett. A, 200 (1995), 121–133 | DOI | MR | Zbl
[36] Shabat A.B., Yamilov R.I., Exponential systems of type I and the Cartan matrices, Preprint, Bashkirian Branch of Academy of Science of the USSR, Ufa, 1981
[37] Smirnov S.V., Semidiscrete Toda lattices, arXiv: 1203.1764
[38] Suris Y.B., “Generalized Toda chains in discrete time”, Leningrad Math. J., 2 (1991), 339–352 | MR | Zbl
[39] Tsuboi Z., “Solutions of discretized affine Toda field equations for $A^{(1)}_n$, $B^{(1)}_n$, $C^{(1)}_n$, $D^{(1)}_n$, $A^{(2)}_n$ and $D^{(2)}_{n+1}$”, J. Phys. Soc. Japan, 66 (1997), 3391–3398 ; arXiv: solv-int/9610011 | DOI | MR | Zbl
[40] Ward R.S., “Discrete {T}oda field equations”, Phys. Lett. A, 199 (1995), 45–48 ; arXiv: solv-int/9502002 | DOI | MR | Zbl
[41] Zabrodin A.V., “Hirota's difference equations”, Theoret. and Math. Phys., 113 (1997), 1347–1392 ; arXiv: solv-int/9704001 | DOI | MR