@article{SIGMA_2012_8_a60,
author = {Mourad E.H. Ismail and Erik Koelink},
title = {Spectral analysis of certain {Schr\"odinger} operators},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a60/}
}
Mourad E.H. Ismail; Erik Koelink. Spectral analysis of certain Schrödinger operators. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a60/
[1] Akhiezer N.I., The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965 | MR
[2] Alhaidari A.D., “An extended class of $L^2$-series solutions of the wave equation”, Ann. Physics, 317 (2005), 152–174 ; arXiv: quant-ph/0409002 | DOI | MR | Zbl
[3] Alhaidari A.D., “Exact $L^2$ series solution of the Dirac–Coulomb problem for all energies”, Ann. Physics, 312 (2004), 144–160 ; arXiv: hep-th/0405023 | DOI | MR | Zbl
[4] Alhaidari A.D., “Group-theoretical foundation of the {$J$}-matrix theory of scattering”, J. Phys. A: Math. Gen., 33 (2000), 6721–6738 | DOI | MR | Zbl
[5] Alhaidari A.D., “$L^2$ series solution of the relativistic Dirac–Morse problem for all energies”, Phys. Lett. A, 326 (2004), 58–69 ; arXiv: math-ph/0405008 | DOI | MR | Zbl
[6] Alhaidari A.D., Bahlouli H., “Extending the class of solvable potentials. I. The infinite potential well with a sinusoidal bottom”, J. Math. Phys., 49 (2008), 082102, 13 pp. | DOI | MR | Zbl
[7] Alhaidari A.D., Bahlouli H., Abdelmonem M.S., Al-Ameen F., Al-Abdulaal T., “Regularization in the {$J$}-matrix method of scattering revisited”, Phys. Lett. A, 364 (2007), 372–377 | DOI | MR | Zbl
[8] Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[9] Askey R., “Continuous $q$-Hermite polynomials when $q>1$”, $q$-Series and Partitions (Minneapolis, MN, 1988), IMA Vol. Math. Appl., 18, Springer, New York, 1989, 151–158 | DOI | MR
[10] Bastard G., Wave mechanics applied to semiconductor heterostructures, Wiley-Interscience, 1991
[11] Berezans'kiĭ J.M., Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, 17, American Mathematical Society, Providence, RI, 1968 | MR | Zbl
[12] Brown B.M., Evans W.D., Ismail M.E.H., “The Askey–Wilson polynomials and $q$-Sturm–Liouville problems”, Math. Proc. Cambridge Philos. Soc., 119 (1996), 1–16 ; arXiv: math.CA/9408209 | DOI | MR | Zbl
[13] Christiansen J.S., Koelink E., “Self-adjoint difference operators and symmetric Al-Salam–Chihara polynomials”, Constr. Approx., 28 (2008), 199–218 ; arXiv: math.CA/0610534 | DOI | MR | Zbl
[14] Deift P.A., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Mathematics, 3, New York University Courant Institute of Mathematical Sciences, New York, 1999 | MR
[15] Edmunds D.E., Evans W.D., Spectral theory and differential operators, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1987 | MR
[16] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. 1, McGraw-Hill, 1953
[17] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[18] Goh S.S., Micchelli C.A., “Uncertainty principles in Hilbert spaces”, J. Fourier Anal. Appl., 8 (2002), 335–373 | DOI | MR | Zbl
[19] Heller E.J., “Theory of $J$-matrix Green's functions with applications to atomic polarizability and phase-shift error bounds”, Phys. Rev. A, 12 (1975), 1222–1231 | DOI
[20] Heller E.J., Reinhardt W.P., Yamani H.A., “On an “equivalent quadrature” calculation of matrix elements of $(z-P^2/2m)$ using an $L^2$ expansion technique”, J. Comp. Phys., 13 (1973), 536–549 | DOI
[21] Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2009 | MR | Zbl
[22] Ismail M.E.H., “Ladder operators for $q^{-1}$-Hermite polynomials”, C.R. Math. Rep. Acad. Sci. Canada, 15 (1993), 261–266 | MR | Zbl
[23] Ismail M.E.H., Koelink E., “Spectral properties of operators using tridiagonalization”, Anal. Appl., 10 (2012), 327–343 ; arXiv: 1108.5716 | DOI | Zbl
[24] Ismail M.E.H., Koelink E., “The $J$-matrix method”, Adv. in Appl. Math., 46 (2011), 379–395 ; arXiv: 0810.4558 | DOI | MR | Zbl
[25] Ismail M.E.H., Letessier J., Masson D., Valent G., “Birth and death processes and orthogonal polynomials”, Orthogonal Polynomials: Theory and Practice (Columbus, OH, 1989), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 294, ed. P. Nevai, Kluwer Acad. Publ., Dordrecht, 1990, 225–229 | MR
[26] Ismail M.E.H., Li X., “Bound on the extreme zeros of orthogonal polynomials”, Proc. Amer. Math. Soc., 115 (1992), 131–140 | DOI | MR | Zbl
[27] Ismail M.E.H., Masson D.R., “$q$-Hermite polynomials, biorthogonal rational functions, and $q$-beta integrals”, Trans. Amer. Math. Soc., 346 (1994), 63–116 | DOI | MR | Zbl
[28] Karlin S., Tavaré S., “Linear birth and death processes with killing”, J. Appl. Probab., 19 (1982), 477–487 | DOI | MR | Zbl
[29] Koekoek R., Swarttouw R.F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998; http://aw.twi.tudelft.nl/~koekoek/askey/
[30] Koelink E., “Spectral theory and special functions”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY, 2004, 45–84 ; arXiv: math.CA/0107036 | MR | Zbl
[31] Koelink H.T., Van der Jeugt J., “Convolutions for orthogonal polynomials from Lie and quantum algebra representations”, SIAM J. Math. Anal., 29 (1998), 794–822 ; arXiv: q-alg/9607010 | DOI | MR | Zbl
[32] Landau L.D., Lifshitz L.M., Course of theoretical physics, v. 3, Quantum mechanics: nonrelativistic theory, 3rd ed., Butterworth-Heinemann, 1991
[33] Masson D.R., Repka J., “Spectral theory of Jacobi matrices in $l^2(\mathbf Z)$ and the $\mathrm{su}(1,1)$ Lie algebra”, SIAM J. Math. Anal., 22 (1991), 1131–1146 | DOI | MR | Zbl
[34] Miller Jr. W., Lie theory and special functions, Mathematics in Science and Engineering, 43, Academic Press, New York, 1968 | DOI | MR | Zbl
[35] Odake S., Sasaki R., “Discrete quantum mechanics”, J. Phys. A: Math. Theor., 44 (2011), 353001, 47 pp. ; arXiv: 1104.0473 | DOI | MR | Zbl
[36] Ojha P.C., “$\mathrm{SO}(2,1)$ Lie algebra, the Jacobi matrix and the scattering states of the Morse oscillator”, J. Phys. A: Math. Gen., 21 (1988), 875–883 | DOI | MR | Zbl
[37] Rainville E.D., Special functions, The Macmillan Co., New York, 1960 | MR | Zbl
[38] Simon B., “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137 (1998), 82–203 ; arXiv: math-ph/9906008 | DOI | MR | Zbl
[39] Szeg{ő} G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., American Mathematical Society, Providence, RI, 1975 | MR
[40] Yamani H.A., Reinhardt W.P., “$L^2$ discretizations of the continuum: radial kinetic energy”, Phys. Rev. A, 11 (1975), 1144–1156 | DOI