@article{SIGMA_2012_8_a58,
author = {Oana Constantinescu},
title = {Formal integrability for the nonautonomous case of the inverse problem of the calculus of variations},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a58/}
}
TY - JOUR AU - Oana Constantinescu TI - Formal integrability for the nonautonomous case of the inverse problem of the calculus of variations JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a58/ LA - en ID - SIGMA_2012_8_a58 ER -
%0 Journal Article %A Oana Constantinescu %T Formal integrability for the nonautonomous case of the inverse problem of the calculus of variations %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a58/ %G en %F SIGMA_2012_8_a58
Oana Constantinescu. Formal integrability for the nonautonomous case of the inverse problem of the calculus of variations. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a58/
[1] Aldridge J.E., Prince G.E., Sarlet W., Thompson G., “An EDS approach to the inverse problem in the calculus of variations”, J. Math. Phys., 47 (2006), 103508, 22 pp. | DOI | MR | Zbl
[2] Anderson I., Thompson G., “The inverse problem of the calculus of variations for ordinary differential equations”, Mem. Amer. Math. Soc., 98, no. 473, 1992, 110 pp. | MR | Zbl
[3] Antonelli P.L., Bucataru I., “Volterra–Hamilton production models with discounting: general theory and worked examples”, Nonlinear Anal. Real World Appl., 2 (2001), 337–356 | DOI | MR | Zbl
[4] Bryant R.L., Chern S.S., Gardner R.B., Goldschmidt H.L., Griffiths P.A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[5] Bucataru I., Constantinescu O., “Helmholtz conditions and symmetries for the time dependent case of the inverse problem of the calculus of variations”, J. Geom. Phys., 60 (2010), 1710–1725 ; arXiv: 0908.1631 | DOI | MR | Zbl
[6] Bucataru I., Dahl M.F., “Semi-basic 1-forms and {H}elmholtz conditions for the inverse problem of the calculus of variations”, J. Geom. Mech., 1 (2009), 159–180 ; arXiv: 0903.1169 | DOI | MR | Zbl
[7] Bucataru I., Muzsnay Z., “Projective metrizability and formal integrability”, SIGMA, 7 (2011), 114, 22 pp. ; arXiv: 1105.2142 | DOI | MR | Zbl
[8] Cantrijn F., Cariñena J.F., Crampin M., Ibort L.A., “Reduction of degenerate Lagrangian systems”, J. Geom. Phys., 3 (1986), 353–400 | DOI | MR | Zbl
[9] Cantrijn F., Sarlet W., Vandecasteele A., Martínez E., “Complete separability of time-dependent second-order ordinary differential equations”, Acta Appl. Math., 42 (1996), 309–334 | DOI | MR
[10] Cariñena J.F., Gràcia X., Marmo G., Martínez E., Muñoz-Lecanda M.C., Román-Roy N., “Geometric Hamilton–Jacobi theory”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1417–1458 ; arXiv: math-ph/0604063 | DOI | MR | Zbl
[11] Cariñena J.F., Martínez E., “Symmetry theory and Lagrangian inverse problem for time-dependent second-order differential equations”, J. Phys. A: Math. Gen., 22 (1989), 2659–2665 | DOI | MR | Zbl
[12] Cartan É., Les systèmes différentiels extérieurs et leurs applications géométriques, Actualités Sci. Ind., no. 994, Hermann et Cie., Paris, 1945 | MR | Zbl
[13] Crampin M., “On the differential geometry of the Euler–Lagrange equations, and the inverse problem of Lagrangian dynamics”, J. Phys. A: Math. Gen., 14 (1981), 2567–2575 | DOI | MR | Zbl
[14] Crampin M., Prince G.E., Sarlet W., Thompson G., “The inverse problem of the calculus of variations: separable systems”, Acta Appl. Math., 57 (1999), 239–254 | DOI | MR | Zbl
[15] Crampin M., Prince G.E., Thompson G., “A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics”, J. Phys. A: Math. Gen., 17 (1984), 1437–1447 | DOI | MR | Zbl
[16] Crampin M., Sarlet W., Martínez E., Byrnes G.B., Prince G.E., “Towards a geometrical understanding of Douglas' solution of the inverse problem of the calculus of variations”, Inverse Problems, 10 (1994), 245–260 | DOI | MR | Zbl
[17] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, Gauthier-Villars, Paris, 1894 | Zbl
[18] Davis D.R., “The inverse problem of the calculus of variations in a space of $(n+1)$ dimensions”, Bull. Amer. Math. Soc., 35 (1929), 371–380 | DOI | MR | Zbl
[19] de Leon M., Rodrigues P.R., “Dynamical connections and non-autonomous Lagrangian systems”, Ann. Fac. Sci. Toulouse Math. (5), 9 (1988), 171–181 | DOI | MR | Zbl
[20] Douglas J., “Solution of the inverse problem of the calculus of variations”, Trans. Amer. Math. Soc., 50 (1941), 71–128 | DOI | MR
[21] Frölicher A., Nijenhuis A., “Theory of vector-valued differential forms. I. Derivations of the graded ring of differential forms”, Nederl. Akad. Wetensch. Proc. Ser. A, 59 (1956), 338–359 | MR
[22] Goldschmidt H., “Integrability criteria for systems of nonlinear partial differential equations”, J. Differential Geometry, 1 (1967), 269–307 | MR | Zbl
[23] Grifone J., Muzsnay Z., Variational principles for second-order differential equations. Application of the Spencer theory to characterize variational sprays, World Scientific Publishing Co. Inc., River Edge, NJ, 2000 | DOI | MR | Zbl
[24] Klein J., “Espaces variationnels et mécanique”, Ann. Inst. Fourier (Grenoble), 12 (1962), 1–124 | DOI | MR | Zbl
[25] Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR
[26] Kosambi D., “Systems of differential equations of the second order”, Q. J. Math., 6 (1935), 1–12 | DOI
[27] Krupková O., The geometry of ordinary variational equations, Lecture Notes in Mathematics, 1678, Springer-Verlag, Berlin, 1997 | MR | Zbl
[28] Krupková O., Prince G.E., “Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations”, Handbook of Global Analysis, Elsevier Sci. B.V., Amsterdam, 2008, 837–904 | DOI | MR | Zbl
[29] Massa E., Pagani E., “Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian mechanics”, Ann. Inst. H. Poincaré Phys. Théor., 61 (1994), 17–62 | MR | Zbl
[30] Prástaro A., “(Co)bordism groups in PDEs”, Acta Appl. Math., 59 (1999), 111–201 | DOI | MR
[31] Prástaro A., “Geometry of PDE's. II. Variational PDE's and integral bordism groups”, J. Math. Anal. Appl., 321 (2006), 930–948 | DOI | MR
[32] Riquier C., Les systèmes d'équations aux dérivées partielles, Gauthier-Villars, Paris, 1910
[33] Santilli R.M., Foundations of theoretical mechanics. I. The inverse problem in Newtonian mechanics, Texts and Monographs in Physics, Springer-Verlag, New York – Heidelberg, 1978 | MR | Zbl
[34] Sarlet W., “Symmetries, first integrals and the inverse problem of Lagrangian mechanics”, J. Phys. A: Math. Gen., 14 (1981), 2227–2238 | DOI | MR | Zbl
[35] Sarlet W., “The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics”, J. Phys. A: Math. Gen., 15 (1982), 1503–1517 | DOI | MR | Zbl
[36] Sarlet W., Crampin M., Martínez E., “The integrability conditions in the inverse problem of the calculus of variations for second-order ordinary differential equations”, Acta Appl. Math., 54 (1998), 233–273 | DOI | MR | Zbl
[37] Sarlet W., Thompson G., Prince G.E., “The inverse problem of the calculus of variations: the use of geometrical calculus in Douglas's analysis”, Trans. Amer. Math. Soc., 354 (2002), 2897–2919 | DOI | MR | Zbl
[38] Sarlet W., Vandecasteele A., Cantrijn F., Martínez E., “Derivations of forms along a map: the framework for time-dependent second-order equations”, Differential Geom. Appl., 5 (1995), 171–203 | DOI | MR | Zbl
[39] Saunders D.J., The geometry of jet bundles, London Mathematical Society Lecture Note Series, 142, Cambridge University Press, Cambridge, 1989 | DOI | MR | Zbl
[40] Spencer D.C., “Overdetermined systems of linear partial differential equations”, Bull. Amer. Math. Soc., 75 (1969), 179–239 | DOI | MR | Zbl