@article{SIGMA_2012_8_a57,
author = {Mihai Visinescu and Gabriel Eduard V{\^\i}lcu},
title = {Hidden symmetries of {Euclideanised} {Kerr-NUT-(A)dS} metrics in certain scaling limits},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a57/}
}
TY - JOUR AU - Mihai Visinescu AU - Gabriel Eduard Vîlcu TI - Hidden symmetries of Euclideanised Kerr-NUT-(A)dS metrics in certain scaling limits JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a57/ LA - en ID - SIGMA_2012_8_a57 ER -
%0 Journal Article %A Mihai Visinescu %A Gabriel Eduard Vîlcu %T Hidden symmetries of Euclideanised Kerr-NUT-(A)dS metrics in certain scaling limits %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a57/ %G en %F SIGMA_2012_8_a57
Mihai Visinescu; Gabriel Eduard Vîlcu. Hidden symmetries of Euclideanised Kerr-NUT-(A)dS metrics in certain scaling limits. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a57/
[1] Acharya B.S., Figueroa-O'Farrill J.M., Hull C.M., Spence B., “Branes at conical singularities and holography”, Adv. Theor. Math. Phys., 2 (1998), 1249–1286 ; arXiv: hep-th/9808014 | MR | Zbl
[2] Agricola I., Friedrich T., “Killing spinors in supergravity with 4-fluxes”, Classical Quantum Gravity, 20 (2003), 4707–4717 ; arXiv: math.DG/0307360 | DOI | MR | Zbl
[3] Alekseevsky D.V., Cortés V., Galaev A.S., Leistner T., “Cones over pseudo-Riemannian manifolds and their holonomy”, J. Reine Angew. Math., 635 (2009), 23–69 ; arXiv: 0707.3063 | DOI | MR | Zbl
[4] Ballmann W., Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2006 | DOI | MR | Zbl
[5] Bär C., “Real Killing spinors and holonomy”, Comm. Math. Phys., 154 (1993), 509–521 | DOI | MR | Zbl
[6] Besse A.L., Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987 | MR
[7] Blair D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976 | MR | Zbl
[8] Blažić N., “Paraquaternionic projective space and pseudo-Riemannian geometry”, Publ. Inst. Math. (Beograd) (N.S.), 60 (1996), 101–107 | MR | Zbl
[9] Boyer C., Galicki K., “3-Sasakian manifolds”, Surveys in Differential Geometry: Essays on Einstein Manifolds, Surv. Differ. Geom., VI, Int. Press, Boston, MA, 1999, 123–184 ; arXiv: hep-th/9810250 | MR | Zbl
[10] Boyer C.P., Galicki K., “Sasakian geometry, holonomy, and supersymmetry”, Handbook of pseudo-Riemannian geometry and supersymmetry, IRMA Lect. Math. Theor. Phys., 16, Eur. Math. Soc., Zürich, 2010, 39–83 ; arXiv: math.DG/0703231 | DOI | MR | Zbl
[11] Boyer C.P., Galicki K., Mann B.M., “The geometry and topology of $3$-Sasakian manifolds”, J. Reine Angew. Math., 455 (1994), 183–220 | DOI | MR | Zbl
[12] Caldarella A.V., Pastore A.M., “Mixed 3-Sasakian structures and curvature”, Ann. Polon. Math., 96 (2009), 107–125 ; arXiv: 0803.1953 | DOI | MR | Zbl
[13] Cariglia M., Krtouš P., Kubizňák D., “Dirac equation in Kerr-NUT-(A)dS spacetimes: intrinsic characterization of separability in all dimensions”, Phys. Rev. D, 84 (2011), 024008, 11 pp. ; arXiv: 1104.4123 | DOI
[14] Carter B., “Killing tensor quantum numbers and conserved currents in curved space”, Phys. Rev. D, 16 (1977), 3395–3414 | DOI | MR
[15] Carter B., McLenaghan R.G., “Generalized total angular momentum operator for the Dirac equation in curved space-time”, Phys. Rev. D, 19 (1979), 1093–1097 | DOI | MR
[16] Chen W., Lü H., Pope C.N., “General Kerr-NUT-AdS metrics in all dimensions”, Classical Quantum Gravity, 23 (2006), 5323–5340 ; arXiv: hep-th/0604125 | DOI | MR | Zbl
[17] Cortés V., Mayer C., Mohaupt T., Saueressig F., “Special geometry of Euclidean supersymmetry. II. Hypermultiplets and the $c$-map”, J. High Energy Phys., 2005:6 (2005), 025, 37 pp. ; arXiv: hep-th/0503094 | DOI | MR
[18] Cvetič M., Lü H., Page D.N., Pope C.N., “New Einstein–Sasaki and Einstein spaces from Kerr–de Sitter”, J. High Energy Phys., 2009:7 (2009), 082, 25 pp. ; arXiv: hep-th/0505223 | DOI | MR
[19] Dunajski M., West S., “Anti-self-dual conformal structures in neutral signature”, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, 113–148 ; arXiv: math.DG/0610280 | DOI | MR | Zbl
[20] Emparan R., Reall H.S., “Black holes in higher dimensions”, Living Rev. Relativ., 11 (2008), 6, 87 pp. ; arXiv: 0801.3471 | Zbl
[21] García-Río E., Matsushita Y., Vázquez-Lorenzo R., “Paraquaternionic Kähler manifolds”, Rocky Mountain J. Math., 31 (2001), 237–260 | DOI | MR | Zbl
[22] Gibbons G.W., Hartnoll S.A., Pope C.N., “Bohm and Einstein–Sasaki metrics, black holes, and cosmological event horizons”, Phys. Rev. D, 67 (2003), 084024, 24 pp. ; arXiv: hep-th/0208031 | DOI | MR
[23] Gibbons G.W., Rychenkova P., “Cones, tri-Sasakian structures and superconformal invariance”, Phys. Lett. B, 443 (1998), 138–142 ; arXiv: hep-th/9809158 | DOI | MR
[24] Houri T., Kubizňák D., Warnick C.M., Yasui Y., “Generalized hidden symmetries and the Kerr–Sen black hole”, J. High Energy Phys., 2010:7 (2010), 055, 33 pp. ; arXiv: 1004.1032 | DOI | MR
[25] Houri T., Kubizňák D., Warnick C., Yasui Y., “Symmetries of the Dirac operator with skew-symmetric torsion”, Classical Quantum Gravity, 27 (2010), 185019, 16 pp. ; arXiv: 1002.3616 | DOI | MR | Zbl
[26] Hull C.M., “Actions for $(2,1)$ sigma models and strings”, Nuclear Phys. B, 509 (1998), 252–272 ; arXiv: hep-th/9702067 | DOI | MR | Zbl
[27] Hull C.M., “Duality and the signature of space-time”, J. High Energy Phys., 1998:11 (1998), 017, 36 pp. ; arXiv: hep-th/9807127 | DOI | MR | Zbl
[28] Ianu{ş} S., Mazzocco R., V{î}lcu G.E., “Real lightlike hypersurfaces of paraquaternionic Kähler manifolds”, Mediterr. J. Math., 3 (2006), 581–592 | DOI | MR | Zbl
[29] Ianu{ş} S., V{î}lcu G.E., “Paraquaternionic manifolds and mixed 3-structures”, Differential Geometry, World Sci. Publ., Hackensack, NJ, 2009, 276–285 | DOI | MR | Zbl
[30] Ianu{ş} S., V{î}lcu G.E., “Some constructions of almost para-hyperhermitian structures on manifolds and tangent bundles”, Int. J. Geom. Methods Mod. Phys., 5 (2008), 893–903 ; arXiv: 0707.3360 | DOI | MR | Zbl
[31] Ianu{ş} S., Visinescu M., V{î}lcu G.E., “Conformal Killing–Yano tensors on manifolds with mixed 3-structures”, SIGMA, 5 (2009), 022, 12 pp. ; arXiv: 0902.3968 | DOI | MR | Zbl
[32] Kobayashi S., Nomizu K., Foundations of differential geometry, v. I, Interscience Publishers, New York – London, 1963 | MR | Zbl
[33] Konishi M., “On manifolds with Sasakian $3$-structure over quaternion Kaehler manifolds”, Kōdai Math. Sem. Rep., 26 (1974/75), 194–200 | DOI | MR
[34] Krtouš P., Kubizňák D., Page D.N., Vasudevan M., “Constants of geodesic motion in higher-dimensional black-hole spacetimes”, Phys. Rev. D, 76 (2007), 084034, 8 pp. ; arXiv: 0707.0001 | DOI | MR
[35] Kubizňák D., “On the supersymmetric limit of Kerr-NUT-AdS metrics”, Phys. Lett. B, 675 (2009), 110–115 ; arXiv: 0902.1999 | DOI | MR
[36] Kubizňák D., Frolov V.P., “Stationary strings and branes in the higher-dimensional Kerr-NUT-(A)dS spacetimes”, J. High Energy Phys., 2008:2 (2008), 007, 14 pp. ; arXiv: 0711.2300 | DOI | MR
[37] Kuo Y., “On almost contact $3$-structure”, Tôhoku Math. J., 22 (1970), 325–332 | DOI | MR | Zbl
[38] Martelli D., Sparks J., “Toric Sasaki–Einstein metrics on $S^2\times S^3$”, Phys. Lett. B, 621 (2005), 208–212 ; arXiv: hep-th/0505027 | DOI | MR | Zbl
[39] Ohnita Y., “Stability and rigidity of special Lagrangian cones over certain minimal Legendrian orbits”, Osaka J. Math., 44 (2007), 305–334 | MR | Zbl
[40] Ooguri H., Vafa C., “Geometry of $N=2$ strings”, Nuclear Phys. B, 361 (1991), 469–518 | DOI | MR
[41] Oota T., Yasui Y., “Separability of {D}irac equation in higher dimensional Kerr–NUT–de Sitter spacetime”, Phys. Lett. B, 659 (2008), 688–693 ; arXiv: 0711.0078 | DOI | MR | Zbl
[42] Oota T., Yasui Y., “Separability of gravitational perturbation in generalized Kerr–NUT–de Sitter space-time”, Internat. J. Modern Phys. A, 25 (2010), 3055–3094 ; arXiv: 0812.1623 | DOI | MR | Zbl
[43] Page D.N., Kubizňák D., Vasudevan M., Krtouš P., “Complete integrability of geodesic motion in general higher-dimensional rotating black-hole spacetimes”, Phys. Rev. Lett., 98 (2007), 061102, 4 pp. ; arXiv: hep-th/0611083 | DOI | MR | Zbl
[44] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure. I”, Tôhoku Math. J., 12 (1960), 459–476 | DOI | MR | Zbl
[45] Satō I., “On a structure similar to the almost contact structure”, Tensor (N.S.), 30 (1976), 219–224 | MR | Zbl
[46] Semmelmann U., “Conformal Killing forms on Riemannian manifolds”, Math. Z., 245 (2003), 503–527 ; arXiv: math.DG/0206117 | DOI | MR | Zbl
[47] Sergyeyev A., Krtouš P., “Complete set of commuting symmetry operators for the Klein–Gordon equation in generalized higher-dimensional Kerr-NUT-(A)dS spacetimes”, Phys. Rev. D, 77 (2008), 044033, 6 pp. ; arXiv: 0711.4623 | DOI | MR
[48] Sharfuddin A., Shahid M.H., “Hypersurfaces of almost quaternion manifolds”, Soochow J. Math., 20 (1994), 297–308 | MR | Zbl
[49] Sparks J., “Sasaki–Einstein manifolds”, Geometry of Special Holonomy and Related Topics, Surv. Differ. Geom., 16, Int. Press, Somerville, MA, 2011, 265–324 ; arXiv: 1004.2461 | MR | Zbl
[50] Vîlcu G.E., Voicu R.C., “Curvature properties of pseudo-sphere bundles over paraquaternionic manifolds”, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1250024, 23 pp. ; arXiv: 1107.5260 | DOI | MR
[51] Yano K., “Some remarks on tensor fields and curvature”, Ann. of Math. (2), 55 (1952), 328–347 | DOI | MR | Zbl