A $2+1$-dimensional non-isothermal magnetogasdynamic system. Hamiltonian–Ermakov integrable reduction
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A $2+1$-dimensional anisentropic magnetogasdynamic system with a polytropic gas law is shown to admit an integrable elliptic vortex reduction when $\gamma= 2$ to a nonlinear dynamical subsystem with underlying integrable Hamiltonian–Ermakov structure. Exact solutions of the magnetogasdynamic system are thereby obtained which describe a rotating elliptic plasma cylinder. The semi-axes of the elliptical cross-section, remarkably, satisfy a Ermakov–Ray–Reid system.
Keywords: magnetogasdynamic system, Hamiltonian–Ermakov structure
Mots-clés : elliptic vortex, Lax pair.
@article{SIGMA_2012_8_a56,
     author = {Hongli An and Colin Rogers},
     title = {A $2+1$-dimensional non-isothermal magnetogasdynamic system. {Hamiltonian{\textendash}Ermakov} integrable reduction},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a56/}
}
TY  - JOUR
AU  - Hongli An
AU  - Colin Rogers
TI  - A $2+1$-dimensional non-isothermal magnetogasdynamic system. Hamiltonian–Ermakov integrable reduction
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a56/
LA  - en
ID  - SIGMA_2012_8_a56
ER  - 
%0 Journal Article
%A Hongli An
%A Colin Rogers
%T A $2+1$-dimensional non-isothermal magnetogasdynamic system. Hamiltonian–Ermakov integrable reduction
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a56/
%G en
%F SIGMA_2012_8_a56
Hongli An; Colin Rogers. A $2+1$-dimensional non-isothermal magnetogasdynamic system. Hamiltonian–Ermakov integrable reduction. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a56/

[1] Cerveró J.M., Lejarreta J.D., “Ermakov Hamiltonians”, Phys. Lett. A, 156 (1991), 201–205 | DOI | MR

[2] Dyson F.J., “Dynamics of a spinning gas cloud”, J. Math. Mech., 18 (1969), 91–101 | MR

[3] Ermakov V.P., “Second-order differential equations: conditions for complete integrability”, Univ. Izv. Kiev, 20:9 (1880), 1–25

[4] Ferapontov E.V., Khusnutdinova K.R., “The characterization of two-component (2+1)-dimensional integrable systems of hydrodynamic type”, J. Phys. A: Math. Gen., 37 (2004), 2949–2963 ; arXiv: nlin.SI/0310021 | DOI | MR | Zbl

[5] Haas F., Goedert J., “On the Hamiltonian structure of Ermakov systems”, J. Phys. A: Math. Gen., 29 (1996), 4083–4092 ; arXiv: math-ph/0211032 | DOI | MR | Zbl

[6] Neukirch T., “Quasi-equilibria: a special class of time-dependent solutions of the two-dimensional magnetohydrodynamic equations”, Phys. Plasmas, 2 (1995), 4389–4399 | DOI | MR

[7] Neukirch T., Cheung D.L.G., “A class of accelerated solutions of the two-dimensional ideal magnetohydrodynamic equations”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2547–2566 | DOI | MR | Zbl

[8] Neukirch T., Priest E.R., “Generalization of a special class of time-dependent solutions of the two-dimensional magnetohydrodynamic equations to arbitrary pressure profiles”, Phys. Plasmas, 7 (2000), 3105–3107 | DOI | MR

[9] Ovsiannikov L.V., “A new solution of the hydrodynamic equations”, Dokl. Akad. Nauk SSSR, 111 (1956), 47–49 | MR

[10] Ray J.R., “Nonlinear superposition law for generalized Ermakov systems”, Phys. Lett. A, 78 (1980), 4–6 | DOI | MR

[11] Reid J.L., Ray J.R., “Ermakov systems, nonlinear superposition, and solutions of nonlinear equations of motion”, J. Math. Phys., 21 (1980), 1583–1587 | DOI | MR | Zbl

[12] Rogers C., “A Ermakov–Ray–Reid reduction in $2+1$-dimensional magnetogasdynamics”, Group Analysis of Differential Equations and Integrable Systems, eds. N.M. Ivanova, P.G.L. Leach, R.O. Popovych, C. Sophocleous, P.A. Damianou, Department of Mathematics and Statistics, University of Cyprus, Nicosia, 2011, 164–177 | MR | Zbl

[13] Rogers C., “Elliptic warm-core theory: the pulsrodon”, Phys. Lett. A, 138 (1989), 267–273 | DOI | MR

[14] Rogers C., An H., “Ermakov–Ray–Reid systems in $(2+1)$-dimensional rotating shallow water theory”, Stud. Appl. Math., 125 (2010), 275–299 | DOI | MR | Zbl

[15] Rogers C., Hoenselaers C., Ray J.R., “On $(2+1)$-dimensional Ermakov systems”, J. Phys. A: Math. Gen., 26 (1993), 2625–2633 | DOI | MR | Zbl

[16] Rogers C., Malomed B., An H., “Ermakov–Ray–Reid reductions of variational approximations in nonlinear optics”, Stud. Appl. Math. (to appear) | DOI

[17] Rogers C., Malomed B., Chow K., An H., “Ermakov–Ray–Reid systems in nonlinear optics”, J. Phys. A: Math. Theor., 43 (2010), 455214, 15 pp. | DOI | MR | Zbl

[18] Rogers C., Schief W.K., “Multi-component Ermakov systems: structure and linearization”, J. Math. Anal. Appl., 198 (1996), 194–220 | DOI | MR | Zbl

[19] Rogers C., Schief W.K., “On the integrability of a Hamiltonian reduction of a $2+1$-dimensional non-isothermal rotating gas cloud system”, Nonlinearity, 24 (2011), 3165–3178 | DOI | MR | Zbl

[20] Rogers C., Schief W.K., “The pulsrodon in $2+1$-dimensional magneto-gasdynamics: Hamiltonian structure and integrability”, J. Math. Phys., 52 (2011), 083701, 20 pp. | DOI | MR

[21] Schäfer G., “Gravity-wave astrophysics”, Relativistic Gravity Research with Emphasis on Experiments and Observations, Lecture Notes in Physics, 410, Springer-Verlag, Berlin, 1992, 163–183 | DOI

[22] Steen A., “Om Formen for Integralet af den lineare Differentialligning af anden Orden”, Forhandl. af Kjobnhaven, 1874, 1–12 | Zbl