Mots-clés : elliptic vortex, Lax pair.
@article{SIGMA_2012_8_a56,
author = {Hongli An and Colin Rogers},
title = {A $2+1$-dimensional non-isothermal magnetogasdynamic system. {Hamiltonian{\textendash}Ermakov} integrable reduction},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a56/}
}
TY - JOUR AU - Hongli An AU - Colin Rogers TI - A $2+1$-dimensional non-isothermal magnetogasdynamic system. Hamiltonian–Ermakov integrable reduction JO - Symmetry, integrability and geometry: methods and applications PY - 2012 VL - 8 UR - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a56/ LA - en ID - SIGMA_2012_8_a56 ER -
%0 Journal Article %A Hongli An %A Colin Rogers %T A $2+1$-dimensional non-isothermal magnetogasdynamic system. Hamiltonian–Ermakov integrable reduction %J Symmetry, integrability and geometry: methods and applications %D 2012 %V 8 %U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a56/ %G en %F SIGMA_2012_8_a56
Hongli An; Colin Rogers. A $2+1$-dimensional non-isothermal magnetogasdynamic system. Hamiltonian–Ermakov integrable reduction. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a56/
[1] Cerveró J.M., Lejarreta J.D., “Ermakov Hamiltonians”, Phys. Lett. A, 156 (1991), 201–205 | DOI | MR
[2] Dyson F.J., “Dynamics of a spinning gas cloud”, J. Math. Mech., 18 (1969), 91–101 | MR
[3] Ermakov V.P., “Second-order differential equations: conditions for complete integrability”, Univ. Izv. Kiev, 20:9 (1880), 1–25
[4] Ferapontov E.V., Khusnutdinova K.R., “The characterization of two-component (2+1)-dimensional integrable systems of hydrodynamic type”, J. Phys. A: Math. Gen., 37 (2004), 2949–2963 ; arXiv: nlin.SI/0310021 | DOI | MR | Zbl
[5] Haas F., Goedert J., “On the Hamiltonian structure of Ermakov systems”, J. Phys. A: Math. Gen., 29 (1996), 4083–4092 ; arXiv: math-ph/0211032 | DOI | MR | Zbl
[6] Neukirch T., “Quasi-equilibria: a special class of time-dependent solutions of the two-dimensional magnetohydrodynamic equations”, Phys. Plasmas, 2 (1995), 4389–4399 | DOI | MR
[7] Neukirch T., Cheung D.L.G., “A class of accelerated solutions of the two-dimensional ideal magnetohydrodynamic equations”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2547–2566 | DOI | MR | Zbl
[8] Neukirch T., Priest E.R., “Generalization of a special class of time-dependent solutions of the two-dimensional magnetohydrodynamic equations to arbitrary pressure profiles”, Phys. Plasmas, 7 (2000), 3105–3107 | DOI | MR
[9] Ovsiannikov L.V., “A new solution of the hydrodynamic equations”, Dokl. Akad. Nauk SSSR, 111 (1956), 47–49 | MR
[10] Ray J.R., “Nonlinear superposition law for generalized Ermakov systems”, Phys. Lett. A, 78 (1980), 4–6 | DOI | MR
[11] Reid J.L., Ray J.R., “Ermakov systems, nonlinear superposition, and solutions of nonlinear equations of motion”, J. Math. Phys., 21 (1980), 1583–1587 | DOI | MR | Zbl
[12] Rogers C., “A Ermakov–Ray–Reid reduction in $2+1$-dimensional magnetogasdynamics”, Group Analysis of Differential Equations and Integrable Systems, eds. N.M. Ivanova, P.G.L. Leach, R.O. Popovych, C. Sophocleous, P.A. Damianou, Department of Mathematics and Statistics, University of Cyprus, Nicosia, 2011, 164–177 | MR | Zbl
[13] Rogers C., “Elliptic warm-core theory: the pulsrodon”, Phys. Lett. A, 138 (1989), 267–273 | DOI | MR
[14] Rogers C., An H., “Ermakov–Ray–Reid systems in $(2+1)$-dimensional rotating shallow water theory”, Stud. Appl. Math., 125 (2010), 275–299 | DOI | MR | Zbl
[15] Rogers C., Hoenselaers C., Ray J.R., “On $(2+1)$-dimensional Ermakov systems”, J. Phys. A: Math. Gen., 26 (1993), 2625–2633 | DOI | MR | Zbl
[16] Rogers C., Malomed B., An H., “Ermakov–Ray–Reid reductions of variational approximations in nonlinear optics”, Stud. Appl. Math. (to appear) | DOI
[17] Rogers C., Malomed B., Chow K., An H., “Ermakov–Ray–Reid systems in nonlinear optics”, J. Phys. A: Math. Theor., 43 (2010), 455214, 15 pp. | DOI | MR | Zbl
[18] Rogers C., Schief W.K., “Multi-component Ermakov systems: structure and linearization”, J. Math. Anal. Appl., 198 (1996), 194–220 | DOI | MR | Zbl
[19] Rogers C., Schief W.K., “On the integrability of a Hamiltonian reduction of a $2+1$-dimensional non-isothermal rotating gas cloud system”, Nonlinearity, 24 (2011), 3165–3178 | DOI | MR | Zbl
[20] Rogers C., Schief W.K., “The pulsrodon in $2+1$-dimensional magneto-gasdynamics: Hamiltonian structure and integrability”, J. Math. Phys., 52 (2011), 083701, 20 pp. | DOI | MR
[21] Schäfer G., “Gravity-wave astrophysics”, Relativistic Gravity Research with Emphasis on Experiments and Observations, Lecture Notes in Physics, 410, Springer-Verlag, Berlin, 1992, 163–183 | DOI
[22] Steen A., “Om Formen for Integralet af den lineare Differentialligning af anden Orden”, Forhandl. af Kjobnhaven, 1874, 1–12 | Zbl