Mots-clés : algebraic cycles
@article{SIGMA_2012_8_a55,
author = {Guillaume Laporte and Johannes Walcher},
title = {Monodromy of an inhomogeneous {Picard{\textendash}Fuchs} equation},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a55/}
}
Guillaume Laporte; Johannes Walcher. Monodromy of an inhomogeneous Picard–Fuchs equation. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a55/
[1] Albano A., Katz S., “Lines on the Fermat quintic threefold and the infinitesimal generalized Hodge conjecture”, Trans. Amer. Math. Soc., 324 (1991), 353–368 | DOI | MR | Zbl
[2] Candelas P., de la Ossa X.C., Green P.S., Parkes L., “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nuclear Phys. B, 359 (1991), 21–74 | DOI | MR | Zbl
[3] Dimofte T., Gukov S., Lenells J., Zagier D., “Exact results for perturbative Chern–Simons theory with complex gauge group”, Commun. Number Theory Phys., 3 (2009), 363–443 ; arXiv: 0903.2472 | MR | Zbl
[4] Donagi R., Markman E., “Cubics, integrable systems, and Calabi–Yau threefolds”, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996, 199–221 ; arXiv: alg-geom/9408004 | MR | Zbl
[5] Doran C.F., Morgan J.W., “Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi–Yau threefolds”, Mirror Symmetry. V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 517–537 | MR | Zbl
[6] Green M., Griffiths P., Kerr M., “Néron models and limits of Abel–Jacobi mappings”, Compos. Math., 146 (2010), 288–366 | DOI | MR | Zbl
[7] Mustaţǎ A., “Degree 1 curves in the Dwork pencil and the mirror quintic”, Math. Ann. (to appear) | DOI
[8] Walcher J., On the arithmetics of D-brane superpotentials, arXiv: 1201.6427
[9] Walcher J., “Opening mirror symmetry on the quintic”, Comm. Math. Phys., 276 (2007), 671–689 ; arXiv: hep-th/0605162 | DOI | MR | Zbl
[10] Zagier D., “The dilogarithm function”, Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3–65 | DOI | MR | Zbl