Monodromy of an inhomogeneous Picard–Fuchs equation
Symmetry, integrability and geometry: methods and applications, Tome 8 (2012) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The global behaviour of the normal function associated with van Geemen's family of lines on the mirror quintic is studied. Based on the associated inhomogeneous Picard–Fuchs equation, the series expansions around large complex structure, conifold, and around the open string discriminant are obtained. The monodromies are explicitly calculated from this data and checked to be integral. The limiting value of the normal function at large complex structure is an irrational number expressible in terms of the di-logarithm.
Keywords: mirror symmetry, quintic threefold.
Mots-clés : algebraic cycles
@article{SIGMA_2012_8_a55,
     author = {Guillaume Laporte and Johannes Walcher},
     title = {Monodromy of an inhomogeneous {Picard{\textendash}Fuchs} equation},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2012},
     volume = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a55/}
}
TY  - JOUR
AU  - Guillaume Laporte
AU  - Johannes Walcher
TI  - Monodromy of an inhomogeneous Picard–Fuchs equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2012
VL  - 8
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a55/
LA  - en
ID  - SIGMA_2012_8_a55
ER  - 
%0 Journal Article
%A Guillaume Laporte
%A Johannes Walcher
%T Monodromy of an inhomogeneous Picard–Fuchs equation
%J Symmetry, integrability and geometry: methods and applications
%D 2012
%V 8
%U http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a55/
%G en
%F SIGMA_2012_8_a55
Guillaume Laporte; Johannes Walcher. Monodromy of an inhomogeneous Picard–Fuchs equation. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a55/

[1] Albano A., Katz S., “Lines on the Fermat quintic threefold and the infinitesimal generalized Hodge conjecture”, Trans. Amer. Math. Soc., 324 (1991), 353–368 | DOI | MR | Zbl

[2] Candelas P., de la Ossa X.C., Green P.S., Parkes L., “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nuclear Phys. B, 359 (1991), 21–74 | DOI | MR | Zbl

[3] Dimofte T., Gukov S., Lenells J., Zagier D., “Exact results for perturbative Chern–Simons theory with complex gauge group”, Commun. Number Theory Phys., 3 (2009), 363–443 ; arXiv: 0903.2472 | MR | Zbl

[4] Donagi R., Markman E., “Cubics, integrable systems, and Calabi–Yau threefolds”, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996, 199–221 ; arXiv: alg-geom/9408004 | MR | Zbl

[5] Doran C.F., Morgan J.W., “Mirror symmetry and integral variations of Hodge structure underlying one-parameter families of Calabi–Yau threefolds”, Mirror Symmetry. V, AMS/IP Stud. Adv. Math., 38, Amer. Math. Soc., Providence, RI, 2006, 517–537 | MR | Zbl

[6] Green M., Griffiths P., Kerr M., “Néron models and limits of Abel–Jacobi mappings”, Compos. Math., 146 (2010), 288–366 | DOI | MR | Zbl

[7] Mustaţǎ A., “Degree 1 curves in the Dwork pencil and the mirror quintic”, Math. Ann. (to appear) | DOI

[8] Walcher J., On the arithmetics of D-brane superpotentials, arXiv: 1201.6427

[9] Walcher J., “Opening mirror symmetry on the quintic”, Comm. Math. Phys., 276 (2007), 671–689 ; arXiv: hep-th/0605162 | DOI | MR | Zbl

[10] Zagier D., “The dilogarithm function”, Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3–65 | DOI | MR | Zbl