Mots-clés : canonical quantization.
@article{SIGMA_2012_8_a54,
author = {Sergei Alexandrov and Marc Geiller and Karim Noui},
title = {Spin foams and canonical quantization},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2012},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a54/}
}
Sergei Alexandrov; Marc Geiller; Karim Noui. Spin foams and canonical quantization. Symmetry, integrability and geometry: methods and applications, Tome 8 (2012). http://geodesic.mathdoc.fr/item/SIGMA_2012_8_a54/
[1] Alekseev A.Y., “Integrability in the Hamiltonian Chern–Simons theory”, St. Petersburg Math. J., 6 (1995), 241–253 | MR
[2] Alekseev A.Y., Grosse H., Schomerus V., “Combinatorial quantization of the Hamiltonian Chern–Simons theory. I”, Comm. Math. Phys., 172 (1995), 317–358 ; arXiv: hep-th/9403066 | DOI | MR | Zbl
[3] Alekseev A.Y., Grosse H., Schomerus V., “Combinatorial quantization of the Hamiltonian Chern–Simons theory. II”, Comm. Math. Phys., 174 (1996), 561–604 ; arXiv: hep-th/9408097 | DOI | MR | Zbl
[4] Alekseev A.Y., Schomerus V., “Representation theory of Chern–Simons observables”, Duke Math. J., 85 (1996), 447–510 ; arXiv: q-alg/9503016 | DOI | MR | Zbl
[5] Alesci E., Noui K., Sardelli F., “Spin-foam models and the physical scalar product”, Phys. Rev. D, 78 (2008), 104009, 16 pp. ; arXiv: 0807.3561 | DOI
[6] Alesci E., Rovelli C., “Complete LQG propagator: difficulties with the Barrett–Crane vertex”, Phys. Rev. D, 76 (2007), 104012, 22 pp. ; arXiv: 0708.0883 | DOI
[7] Alexandrov S., “Choice of connection in loop quantum gravity”, Phys. Rev. D, 65 (2002), 024011, 7 pp. ; arXiv: gr-qc/0107071 | DOI | MR
[8] Alexandrov S., “New vertices and canonical quantization”, Phys. Rev. D, 82 (2010), 024024, 9 pp. ; arXiv: 1004.2260 | DOI | MR
[9] Alexandrov S., “Simplicity and closure constraints in spin foam models of gravity”, Phys. Rev. D, 78 (2008), 044033, 10 pp. ; arXiv: 0802.3389 | DOI | MR
[10] Alexandrov S., “$\mathrm{SO}(4,\mathbf C)$-covariant Ashtekar–Barbero gravity and the Immirzi parameter”, Classical Quantum Gravity, 17 (2000), 4255–4268 ; arXiv: gr-qc/0005085 | DOI | MR | Zbl
[11] Alexandrov S., “Spin foam model from canonical quantization”, Phys. Rev. D, 77 (2008), 024009, 15 pp. ; arXiv: 0705.3892 | DOI | MR
[12] Alexandrov S., Buffenoir E., Roche P., “Plebanski theory and covariant canonical formulation”, Classical Quantum Gravity, 24 (2007), 2809–2824 ; arXiv: gr-qc/0612071 | DOI | MR | Zbl
[13] Alexandrov S., Kádár Z., “Timelike surfaces in Lorentz covariant loop gravity and spin foam models”, Classical Quantum Gravity, 22 (2005), 3491–3509 ; arXiv: gr-qc/0501093 | DOI | MR | Zbl
[14] Alexandrov S., Krasnov K., “Hamiltonian analysis of non-chiral {P}lebanski theory and its generalizations”, Classical Quantum Gravity, 26 (2009), 055005, 10 pp. ; arXiv: 0809.4763 | DOI | MR | Zbl
[15] Alexandrov S., Livine E.R., “$\mathrm{SU}(2)$ loop quantum gravity seen from covariant theory”, Phys. Rev. D, 67 (2003), 044009, 15 pp. ; arXiv: gr-qc/0209105 | DOI | MR
[16] Alexandrov S., Roche P., “Critical overview of loops and foams”, Phys. Rep., 506 (2011), 41–86 ; arXiv: 1009.4475 | DOI | MR
[17] Alexandrov S., Vassilevich D., “Area spectrum in Lorentz covariant loop gravity”, Phys. Rev. D, 64 (2001), 044023, 7 pp. ; arXiv: gr-qc/0103105 | DOI | MR
[18] Alexandrov S.Y., Vassilevich D.V., “Path integral for the Hilbert–Palatini and Ashtekar gravity”, Phys. Rev. D, 58 (1998), 124029, 13 pp. ; arXiv: gr-qc/9806001 | DOI | MR
[19] Ashtekar A., Fairhurst S., Willis J.L., “Quantum gravity, shadow states and quantum mechanics”, Classical Quantum Gravity, 20 (2003), 1031–1061 ; arXiv: gr-qc/0207106 | DOI | MR | Zbl
[20] Ashtekar A., Husain V., Rovelli C., Samuel J., Smolin L., “$2+1$ quantum gravity as a toy model for the $3+1$ theory”, Classical Quantum Gravity, 6 (1989), L185–L193 | DOI | MR
[21] Ashtekar A., Lewandowski J., “Background independent quantum gravity: a status report”, Classical Quantum Gravity, 21 (2004), R53–R152 ; arXiv: gr-qc/0404018 | DOI | MR | Zbl
[22] Ashtekar A., Lewandowski J., “Quantum theory of geometry. I. Area operators”, Classical Quantum Gravity, 14 (1997), A55–A81 ; arXiv: gr-qc/9602046 | DOI | MR | Zbl
[23] Ashtekar A., Lewandowski J., “Quantum theory of geometry. II. Volume operators”, Adv. Theor. Math. Phys., 1 (1997), 388–429 ; arXiv: gr-qc/9711031 | MR | Zbl
[24] Ashtekar A., Loll R., “New loop representations for $2+1$ gravity”, Classical Quantum Gravity, 11 (1994), 2417–2434 ; arXiv: gr-qc/9405031 | DOI | MR
[25] Baez J.C., Christensen J.D., Egan G., “Asymptotics of $10j$ symbols”, Classical Quantum Gravity, 19 (2002), 6489–6513 ; arXiv: gr-qc/0208010 | DOI | MR | Zbl
[26] Bais F.A., Muller N.M., Schroers B.J., “Quantum group symmetry and particle scattering in $(2+1)$-dimensional quantum gravity”, Nuclear Phys. B, 640 (2002), 3–45 ; arXiv: hep-th/0205021 | DOI | MR | Zbl
[27] Balachandran A.P., Marmo G., Skagerstam B.S., Stern A., Gauge symmetries and fibre bundles: applications to particle dynamics, Lecture Notes in Physics, 188, Springer-Verlag, Berlin, 1983 | MR | Zbl
[28] Baratin A., Dittrich B., Oriti D., Tambornino J., “Non-commutative flux representation for loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 175011, 19 pp. ; arXiv: 1004.3450 | DOI | MR | Zbl
[29] Baratin A., Flori C., Thiemann T., The Holst spin foam model via cubulations, arXiv: 0812.4055
[30] Baratin A., Oriti D., “Group field theory with noncommutative metric variables”, Phys. Rev. Lett., 105 (2010), 221302, 4 pp. ; arXiv: 1002.4723 | DOI | MR
[31] Baratin A., Oriti D., “Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett–Crane model”, New J. Phys., 13 (2011), 125011, 28 pp. ; arXiv: 1108.1178 | DOI
[32] Barrett J.W., Crane L., “A Lorentzian signature model for quantum general relativity”, Classical Quantum Gravity, 17 (2000), 3101–3118 ; arXiv: gr-qc/9904025 | DOI | MR | Zbl
[33] Barrett J.W., Crane L., “Relativistic spin networks and quantum gravity”, J. Math. Phys., 39 (1998), 3296–3302 ; arXiv: gr-qc/9709028 | DOI | MR | Zbl
[34] Barrett J.W., Dowdall R.J., Fairbairn W.J., Gomes H., Hellmann F., “Asymptotic analysis of the Engle–Pereira–Rovelli–Livine four-simplex amplitude”, J. Math. Phys., 50 (2009), 112504, 30 pp. ; arXiv: 0902.1170 | DOI | MR | Zbl
[35] Barrett J.W., Dowdall R.J., Fairbairn W.J., Hellmann F., Pereira R., “Lorentzian spin foam amplitudes: graphical calculus and asymptotics”, Classical Quantum Gravity, 27 (2010), 165009, 34 pp. ; arXiv: 0907.2440 | DOI | MR | Zbl
[36] Barrett J.W., Naish-Guzman I., “The Ponzano–Regge model”, Classical Quantum Gravity, 26 (2009), 155014, 48 pp. ; arXiv: 0803.3319 | DOI | Zbl
[37] Barrett J.W., Naish-Guzman I., “The Ponzano–Regge model and Reidemeister torsion”, On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, World Scientific Publishing, Singapore, 2006, 2782–2784 ; arXiv: gr-qc/0612170 | DOI
[38] Barrett J.W., Steele C.M., “Asymptotics of relativistic spin networks”, Classical Quantum Gravity, 20 (2003), 1341–1361 ; arXiv: gr-qc/0209023 | DOI | MR | Zbl
[39] Barros e Sá N., “Hamiltonian analysis of general relativity with the Immirzi parameter”, Internat. J. Modern Phys. D, 10 (2001), 261–272 ; arXiv: gr-qc/0006013 | DOI | MR | Zbl
[40] Bianchi E., “The length operator in loop quantum gravity”, Nuclear Phys. B, 807 (2009), 591–624 ; arXiv: 0806.4710 | DOI | MR | Zbl
[41] Bojowald M., Perez A., “Spin foam quantization and anomalies”, Gen. Relativity Gravitation, 42 (2010), 877–907 ; arXiv: gr-qc/0303026 | DOI | MR | Zbl
[42] Bonzom V., “From lattice BF gauge theory to area–angle Regge calculus”, Classical Quantum Gravity, 26 (2009), 155020, 25 pp. ; arXiv: 0903.0267 | DOI | Zbl
[43] Bonzom V., “Spin foam models and the Wheeler–DeWitt equation for the quantum 4-simplex”, Phys. Rev. D, 84 (2011), 024009, 13 pp. ; arXiv: 1101.1615 | DOI
[44] Bonzom V., Freidel L., “The Hamiltonian constraint in 3d Riemannian loop quantum gravity”, Classical Quantum Gravity, 28 (2011), 195006, 24 pp. ; arXiv: 1101.3524 | DOI | MR | Zbl
[45] Bonzom V., Laddha A., “Lessons from toy-models for the dynamics of loop quantum gravity”, SIGMA, 8 (2012), 009, 50 pp. ; arXiv: 1110.2157 | DOI | MR | Zbl
[46] Bonzom V., Smerlak M., “Bubble divergences from cellular cohomology”, Lett. Math. Phys., 93 (2010), 295–305 ; arXiv: 1004.5196 | DOI | MR | Zbl
[47] Bonzom V., Smerlak M., “Bubble divergences from twisted cohomology”, Comm. Math. Phys., 312 (2012), 399–426 ; arXiv: 1008.1476 | DOI | MR
[48] Bonzom V., Smerlak M., “Bubble divergences: sorting out topology from cell structure”, Ann. Henri Poincaré, 13 (2012), 185–208 ; arXiv: 1103.3961 | DOI | MR | Zbl
[49] Buffenoir E., Henneaux M., Noui K., Roche P., “Hamiltonian analysis of Plebanski theory”, Classical Quantum Gravity, 21 (2004), 5203–5220 ; arXiv: gr-qc/0404041 | DOI | MR | Zbl
[50] Buffenoir E., Noui K., Roche P., “Hamiltonian quantization of Chern–Simons theory with $\mathrm{SL}(2,\mathbb C)$ group”, Classical Quantum Gravity, 19 (2002), 4953–5015 ; arXiv: hep-th/0202121 | DOI | MR | Zbl
[51] Capovilla R., Dell J., Jacobson T., Mason L., “Self-dual $2$-forms and gravity”, Classical Quantum Gravity, 8 (1991), 41–57 ; http://stacks.iop.org/0264-9381/8/41 | DOI | MR | Zbl
[52] Carlip S., Quantum gravity in $2+1$ dimensions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1998 | DOI | MR | Zbl
[53] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1995 | MR
[54] Cianfrani F., Montani G., “Towards loop quantum gravity without the time gauge”, Phys. Rev. Lett., 102 (2009), 091301, 4 pp. ; arXiv: 0811.1916 | DOI | MR
[55] Conrady F., Freidel L., “Semiclassical limit of 4-dimensional spin foam models”, Phys. Rev. D, 78 (2008), 104023, 18 pp. ; arXiv: 0809.2280 | DOI | MR
[56] Conrady F., Hnybida J., “A spin foam model for general Lorentzian 4-geometries”, Classical Quantum Gravity, 27 (2010), 185011, 23 pp. ; arXiv: 1002.1959 | DOI | MR | Zbl
[57] Crane L., Perez A., Rovelli C., “Perturbative finiteness in spin-foam quantum gravity”, Phys. Rev. Lett., 87 (2001), 181301, 4 pp. | DOI | MR
[58] De Pietri R., Freidel L., “$\mathrm{so}(4)$ Plebański action and relativistic spin-foam model”, Classical Quantum Gravity, 16 (1999), 2187–2196 ; arXiv: gr-qc/9804071 | DOI | MR | Zbl
[59] de Sousa Gerbert P., “On spin and (quantum) gravity in $2+1$ dimensions”, Nuclear Phys. B, 346 (1990), 440–472 | DOI | MR
[60] Deser S., Jackiw R., “Three-dimensional cosmological gravity: dynamics of constant curvature”, Ann. Physics, 153 (1984), 405–416 | DOI | MR
[61] Deser S., Jackiw R., 't Hooft G., “Three-dimensional Einstein gravity: dynamics of flat space”, Ann. Physics, 152 (1984), 220–235 | DOI | MR
[62] Ding Y., Rovelli C., “The physical boundary Hilbert space and volume operator in the {L}orentzian new spin-foam theory”, Classical Quantum Gravity, 27 (2010), 205003, 11 pp. ; arXiv: 1006.1294 | DOI | MR | Zbl
[63] Dupuis M., Livine E.R., “Lifting SU(2) spin networks to projected spin networks”, Phys. Rev. D, 82 (2010), 064044, 11 pp. ; arXiv: 1008.4093 | DOI | MR
[64] Elitzur S., Moore G., Schwimmer A., Seiberg N., “Remarks on the canonical quantization of the Chern–Simons–Witten theory”, Nuclear Phys. B, 326 (1989), 108–134 | DOI | MR
[65] Engle J., Han M., Thiemann T., “Canonical path integral measures for Holst and Plebanski gravity. I. Reduced phase space derivation”, Classical Quantum Gravity, 27 (2010), 245014, 29 pp. ; arXiv: 0911.3433 | DOI | MR | Zbl
[66] Engle J., Livine E., Pereira R., Rovelli C., “LQG vertex with finite Immirzi parameter”, Nuclear Phys. B, 799 (2008), 136–149 ; arXiv: 0711.0146 | DOI | MR | Zbl
[67] Engle J., Pereira R., Rovelli C., “Flipped spinfoam vertex and loop gravity”, Nuclear Phys. B, 798 (2008), 251–290 ; arXiv: 0708.1236 | DOI | MR | Zbl
[68] Engle J., Pereira R., Rovelli C., “Loop-quantum-gravity vertex amplitude”, Phys. Rev. Lett., 99 (2007), 161301, 4 pp. ; arXiv: 0705.2388 | DOI | MR | Zbl
[69] Fairbairn W.J., Meusburger C., “Quantum deformation of two four-dimensional spin foam models”, J. Math. Phys., 53 (2012), 022501, 37 pp. ; arXiv: 1012.4784 | DOI | MR
[70] Fock V.V., Rosly A.A., “Poisson structure on moduli of flat connections on Riemann surfaces and the $r$-matrix”, Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 191, Amer. Math. Soc., Providence, RI, 1999, 67–86 ; arXiv: math.QA/9802054 | MR | Zbl
[71] Foxon T.J., “Spin networks, Turaev–Viro theory and the loop representation”, Classical Quantum Gravity, 12 (1995), 951–964 ; arXiv: gr-qc/9408013 | DOI | MR | Zbl
[72] Freidel L., “Group field theory: an overview”, Internat. J. Theoret. Phys., 44 (2005), 1769–1783 ; arXiv: hep-th/0505016 | DOI | MR | Zbl
[73] Freidel L., Geiller M., Ziprick J., Continuous formulation of the loop quantum gravity phase space, arXiv: 1110.4833
[74] Freidel L., Gurau R., Oriti D., “Group field theory renormalization in the 3D case: power counting of divergences”, Phys. Rev. D, 80 (2009), 044007, 20 pp. ; arXiv: 0905.3772 | DOI | MR
[75] Freidel L., Krasnov K., “A new spin foam model for 4D gravity”, Classical Quantum Gravity, 25 (2008), 125018, 36 pp. ; arXiv: 0708.1595 | DOI | MR | Zbl
[76] Freidel L., Krasnov K., Puzio R., “BF description of higher-dimensional gravity theories”, Adv. Theor. Math. Phys., 3 (1999), 1289–1324 ; arXiv: hep-th/9901069 | MR | Zbl
[77] Freidel L., Livine E.R., “3D quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp. ; arXiv: hep-th/0512113 | DOI | MR | Zbl
[78] Freidel L., Livine E.R., “Ponzano–Regge model revisited. III. Feynman diagrams and effective field theory”, Classical Quantum Gravity, 23 (2006), 2021–2061 ; arXiv: hep-th/0502106 | DOI | MR | Zbl
[79] Freidel L., Livine E.R., “Spin networks for noncompact groups”, J. Math. Phys., 44 (2003), 1322–1356 ; arXiv: hep-th/0205268 | DOI | MR | Zbl
[80] Freidel L., Livine E.R., Rovelli C., “Spectra of length and area in $(2+1)$ Lorentzian loop quantum gravity”, Classical Quantum Gravity, 20 (2003), 1463–1478 ; arXiv: gr-qc/0212077 | DOI | MR | Zbl
[81] Freidel L., Louapre D., “Asymptotics of $6j$ and $10j$ symbols”, Classical Quantum Gravity, 20 (2003), 1267–1294 ; arXiv: hep-th/0209134 | DOI | MR | Zbl
[82] Freidel L., Louapre D., “Nonperturbative summation over 3D discrete topologies”, Phys. Rev. D, 68 (2003), 104004, 16 pp. ; arXiv: hep-th/0211026 | DOI | MR
[83] Freidel L., Louapre D., “Ponzano–Regge model revisited. I. Gauge fixing, observables and interacting spinning particles”, Classical Quantum Gravity, 21 (2004), 5685–5726 ; arXiv: hep-th/0401076 | DOI | MR | Zbl
[84] Freidel L., Louapre D., Ponzano–Regge model revisited. II. Equivalence with Chern–Simons, arXiv: gr-qc/0410141
[85] Freyd P., Yetter D., Hoste J., Lickorish W.B.R., Millett K., Ocneanu A., “A new polynomial invariant of knots and links”, Bull. Amer. Math. Soc. (N.S.), 12 (1985), 239–246 | DOI | MR | Zbl
[86] Geiller M., Lachièze-Rey M., Noui K., “A new look at Lorentz-covariant loop quantum gravity”, Phys. Rev. D, 84 (2011), 044002, 19 pp. ; arXiv: 1105.4194 | DOI
[87] Geiller M., Lachièze-Rey M., Noui K., Sardelli F., “A Lorentz-covariant connection for canonical gravity”, SIGMA, 7 (2011), 083, 10 pp. ; arXiv: 1103.4057 | DOI | MR | Zbl
[88] Geiller M., Noui K., “Testing the imposition of the spin foam simplicity constraints”, Classical Quantum Gravity, 29 (2012), 135008, 28 pp. ; arXiv: 1112.1965 | DOI | Zbl
[89] Giulini D., “On the configuration space topology in general relativity”, Helv. Phys. Acta, 68 (1995), 86–111 ; arXiv: gr-qc/9301020 | MR | Zbl
[90] Goldman W.M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54 (1984), 200–225 | DOI | MR | Zbl
[91] Gott III J.R., “Closed timelike curves produced by pairs of moving cosmic strings: exact solutions”, Phys. Rev. Lett., 66 (1991), 1126–1129 | DOI | MR | Zbl
[92] Grot N., Rovelli C., “Moduli-space structure of knots with intersections”, J. Math. Phys., 37 (1996), 3014–3021 ; arXiv: gr-qc/9604010 | DOI | MR | Zbl
[93] Han M., “4-dimensional spin-foam model with quantum Lorentz group”, J. Math. Phys., 52 (2011), 072501, 22 pp. ; arXiv: 1012.4216 | DOI | MR
[94] Han M., “Canonical path-integral measures for Holst and Plebanski gravity. II. Gauge invariance and physical inner product”, Classical Quantum Gravity, 27 (2010), 245015, 39 pp. ; arXiv: 0911.3436 | DOI | MR | Zbl
[95] Henneaux M., Slavnov A.A., “A note on the path integral for systems with primary and secondary second class constraints”, Phys. Lett. B, 338 (1994), 47–50 ; arXiv: hep-th/9406161 | DOI | MR
[96] Holst S., “Barbero's Hamiltonian derived from a generalized Hilbert–Palatini action”, Phys. Rev. D, 53 (1996), 5966–5969 ; arXiv: gr-qc/9511026 | DOI | MR
[97] Horowitz G.T., “Exactly soluble diffeomorphism invariant theories”, Comm. Math. Phys., 125 (1989), 417–437 | DOI | MR | Zbl
[98] Jones V.F.R., “A new knot polynomial and von Neumann algebras”, Notices Amer. Math. Soc., 33 (1986), 219–225 | MR
[99] Joung E., Mourad J., Noui K., “Three dimensional quantum geometry and deformed symmetry”, J. Math. Phys., 50 (2009), 052503, 29 pp. ; arXiv: 0806.4121 | DOI | MR | Zbl
[100] Kamiński W., Kisielowski M., Lewandowski J., “The EPRL intertwiners and corrected partition function”, Classical Quantum Gravity, 27 (2010), 165020, 15 pp. ; arXiv: 0912.0540 | DOI | MR | Zbl
[101] Koornwinder T.H., Bais F.A., Muller N.M., “Tensor product representations of the quantum double of a compact group”, Comm. Math. Phys., 198 (1998), 157–186 ; arXiv: q-alg/9712042 | DOI | MR | Zbl
[102] Koornwinder T.H., Muller N.M., “The quantum double of a (locally) compact group”, J. Lie Theory, 7 (1997), 101–120 ; arXiv: q-alg/9605044 | MR | Zbl
[103] Labastida J.M.F., “Knot invariants and Chern–Simons theory”, European Congress of Mathematics (Barcelona, 2000), v. II, Progr. Math., 202, Birkhäuser, Basel, 2001, 467–477 ; arXiv: hep-th/0007152 | MR | Zbl
[104] Labastida J.M.F., Ramallo A.V., “Operator formalism for Chern–Simons theories”, Phys. Lett. B, 227 (1989), 92–102 | DOI | MR
[105] Liu L., Montesinos M., Perez A., “Topological limit of gravity admitting an $\mathrm{SU}(2)$ connection formulation”, Phys. Rev. D, 81 (2010), 064033, 9 pp. ; arXiv: 0906.4524 | DOI | MR
[106] Livine E.R., “Projected spin networks for Lorentz connection: linking spin foams and loop gravity”, Classical Quantum Gravity, 19 (2002), 5525–5541 ; arXiv: gr-qc/0207084 | DOI | MR | Zbl
[107] Livine E.R., Ryan J.P., “A note on B-observables in Ponzano–Regge 3D quantum gravity”, Classical Quantum Gravity, 26 (2009), 035013, 19 pp. ; arXiv: 0808.0025 | DOI | MR | Zbl
[108] Livine E.R., Speziale S., “Consistently solving the simplicity constraints for spinfoam quantum gravity”, Europhys. Lett., 81 (2008), 50004, 6 pp. ; arXiv: 0708.1915 | DOI
[109] Magnen J., Noui K., Rivasseau V., Smerlak M., “Scaling behavior of three-dimensional group field theory”, Classical Quantum Gravity, 26 (2009), 185012, 25 pp. ; arXiv: 0906.5477 | DOI | MR | Zbl
[110] Marolf D.M., “Loop representations for $2+1$ gravity on a torus”, Classical Quantum Gravity, 10 (1993), 2625–2647 ; arXiv: gr-qc/9303019 | DOI | MR | Zbl
[111] Matschull H.J., “The phase space structure of multi-particle models in $2+1$ gravity”, Classical Quantum Gravity, 18 (2001), 3497–3560 ; arXiv: gr-qc/0103084 | DOI | MR | Zbl
[112] Meusburger C., Noui K., “Combinatorial quantisation of the Euclidean torus universe”, Nuclear Phys. B, 841 (2010), 463–505 ; arXiv: 1007.4615 | DOI | MR | Zbl
[113] Meusburger C., Schroers B.J., “Boundary conditions and symplectic structure in the Chern–Simons formulation of $(2+1)$-dimensional gravity”, Classical Quantum Gravity, 22 (2005), 3689–3724 ; arXiv: gr-qc/0505071 | DOI | MR | Zbl
[114] Meusburger C., Schroers B.J., “Mapping class group actions in Chern–Simons theory with gauge group $G\rtimes\mathfrak g^*$”, Nuclear Phys. B, 706 (2005), 569–597 ; arXiv: hep-th/0312049 | DOI | MR | Zbl
[115] Meusburger C., Schroers B.J., “Poisson structure and symmetry in the Chern–Simons formulation of $(2+1)$-dimensional gravity”, Classical Quantum Gravity, 20 (2003), 2193–2233 ; arXiv: gr-qc/0301108 | DOI | MR | Zbl
[116] Meusburger C., Schroers B.J., “The quantisation of Poisson structures arising in Chern–Simons theory with gauge group $G\ltimes\mathfrak g^*$”, Adv. Theor. Math. Phys., 7 (2003), 1003–1043 ; arXiv: hep-th/0310218 | MR
[117] Mikovic A., Vojinovic M., “Effective action for EPRL/FK spin foam models”, J. Phys. Conf. Ser., 360 (2012), 012049, 4 pp. ; arXiv: 1110.6114 | DOI
[118] Noui K., “Three-dimensional loop quantum gravity: particles and the quantum double”, J. Math. Phys., 47 (2006), 102501, 30 pp. ; arXiv: gr-qc/0612144 | DOI | MR | Zbl
[119] Noui K., “Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory”, Classical Quantum Gravity, 24 (2007), 329–360 ; arXiv: gr-qc/0612145 | DOI | MR | Zbl
[120] Noui K., Perez A., “Three-dimensional loop quantum gravity: coupling to point particles”, Classical Quantum Gravity, 22 (2005), 4489–4513 ; arXiv: gr-qc/0402111 | DOI | MR | Zbl
[121] Noui K., Perez A., “Three-dimensional loop quantum gravity: physical scalar product and spin-foam models”, Classical Quantum Gravity, 22 (2005), 1739–1761 ; arXiv: gr-qc/0402110 | DOI | MR | Zbl
[122] Noui K., Perez A., Pranzetti D., “Canonical quantization of non-commutative holonomies in $2+1$ loop quantum gravity”, J. High Energy Phys., 2011:10 (2011), 036, 22 pp. ; arXiv: 1105.0439 | DOI
[123] Noui K., Roche P., “Cosmological deformation of Lorentzian spin foam models”, Classical Quantum Gravity, 20 (2003), 3175–3213 ; arXiv: gr-qc/0211109 | DOI | MR | Zbl
[124] Oriti D., The group field theory approach to quantum gravity: some recent results, arXiv: 0912.2441
[125] Perez A., “Finiteness of a spinfoam model for Euclidean quantum general relativity”, Nuclear Phys. B, 599 (2001), 427–434 ; arXiv: gr-qc/0011058 | DOI | MR | Zbl
[126] Perez A., Introduction to loop quantum gravity and spin foams, arXiv: gr-qc/0409061
[127] Perez A., Pranzetti D., “On the regularization of the constraint algebra of quantum gravity in $2+1$ dimensions with a nonvanishing cosmological constant”, Classical Quantum Gravity, 27 (2010), 145009, 20 pp. ; arXiv: 1001.3292 | DOI | MR | Zbl
[128] Perez A., Rovelli C., “$(3+1)$-dimensional spin foam model of quantum gravity with spacelike and timelike components”, Phys. Rev. D, 64 (2001), 064002, 12 pp. ; arXiv: gr-qc/0011037 | DOI | MR
[129] Perez A., Rovelli C., “A spin foam model without bubble divergences”, Nuclear Phys. B, 599 (2001), 255–282 ; arXiv: gr-qc/0006107 | DOI | MR | Zbl
[130] Perez A., Rovelli C., “Spin foam model for Lorentzian general relativity”, Phys. Rev. D, 63 (2001), 041501, 5 pp. ; arXiv: gr-qc/0009021 | DOI | MR
[131] Plebanski J.F., “On the separation of Einsteinian substructures”, J. Math. Phys., 18 (1977), 2511–2520 | DOI | MR | Zbl
[132] Ponzano G., Regge T., “Semiclassical limit of Racah coefficients”, Spectroscopy and Group Theoretical Methods in Physics, eds. F. Block et al., North Holland, Amsterdam, 1968, 1–58
[133] Reisenberger M.P., “On relativistic spin network vertices”, J. Math. Phys., 40 (1999), 2046–2054 ; arXiv: gr-qc/9809067 | DOI | MR | Zbl
[134] Reisenberger M.P., Rovelli C., ““Sum over surfaces” form of loop quantum gravity”, Phys. Rev. D, 56 (1997), 3490–3508 ; arXiv: gr-qc/9612035 | DOI | MR
[135] Reshetikhin N., Turaev V.G., “Invariants of $3$-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597 | DOI | MR | Zbl
[136] Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[137] Rovelli C., Smolin L., “Discreteness of area and volume in quantum gravity”, Nuclear Phys. B, 442 (1995), 593–619 ; arXiv: gr-qc/9411005 | DOI | MR | Zbl
[138] Rovelli C., Speziale S., “Lorentz covariance of loop quantum gravity”, Phys. Rev. D, 83 (2011), 104029, 6 pp. ; arXiv: 1012.1739 | DOI
[139] Sahlmann H., Thiemann T., “Chern–Simons theory, Stokes' theorem, and the Duflo map”, J. Geom. Phys., 61 (2011), 1104–1121 ; arXiv: 1101.1690 | DOI | MR | Zbl
[140] Samuel J., “Is Barbero's Hamiltonian formulation a gauge theory of Lorentzian gravity?”, Classical Quantum Gravity, 17 (2000), L141–L148 ; arXiv: gr-qc/0005095 | DOI | MR | Zbl
[141] Thiemann T., “A length operator for canonical quantum gravity”, J. Math. Phys., 39 (1998), 3372–3392 ; arXiv: gr-qc/9606092 | DOI | MR | Zbl
[142] Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[143] Thiemann T., “Quantum spin dynamics (QSD). IV. $2+1$ Euclidean quantum gravity as a model to test $3+1$ Lorentzian quantum gravity”, Classical Quantum Gravity, 15 (1998), 1249–1280 ; arXiv: gr-qc/9705018 | DOI | MR | Zbl
[144] Thiemann T., “Quantum spin dynamics (QSD). VII. Symplectic structures and continuum lattice formulations of gauge field theories”, Classical Quantum Gravity, 18 (2001), 3293–3338 ; arXiv: hep-th/0005232 | DOI | MR | Zbl
[145] Turaev V., Virelizier A., On two approaches to 3-dimensional TQFTs, arXiv: 1006.3501
[146] Turaev V.G., Viro O.Y., “State sum invariants of $3$-manifolds and quantum $6j$-symbols”, Topology, 31 (1992), 865–902 | DOI | MR | Zbl
[147] Vassiliev V.A., “Cohomology of knot spaces”, Theory of Singularities and its Applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69 | MR
[148] Witten E., “$2+1$-dimensional gravity as an exactly soluble system”, Nuclear Phys. B, 311 (1988), 46–78 | DOI | MR | Zbl
[149] Witten E., “Analytic continuation of Chern–Simons theory”, Chern–Simons Gauge Theory: 20 Years After, AMS/IP Stud. Adv. Math., 50, Amer. Math. Soc., Providence, RI, 2011, 347–446 ; arXiv: 1001.2933 | MR | Zbl
[150] Witten E., “Quantum field theory and the Jones polynomial”, Comm. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl